참고문헌
- ACI 318M-11 (2011), Building code requirements for structural concrete and commentary; American Concrete Institute. Farmington Hills, MI 48331, USA.
- ACI 440.1R-06 (2006), Guide for the design and construction of structural concrete reinforced with FRP bars; American Concrete Institute, USA.
- ACI 440.2R-08 (2008), Guide for the design and construction of externally bonded FRP systems for strengthening concrete structures; American Concrete Institute, USA.
- ACI 440.1R-15 (2015), Guide for the design and construction of structural concrete reinforced with FRP bars; American Concrete Institute, USA.
- Afifi, M., Mohamed, H. and Benmokrane, B. (2014a), "Axial capacity of circular concrete columns reinforced with GFRP bars and spirals", J. Compos. Constr., 18(1), 04013017. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000438
- Afifi, M., Mohamed, H. and Benmokrane, B. (2014b), "Strength and axial behaviour of circular concrete columns reinforced with CFRP bars and spirals", J. Compos. Constr., 18(2), 04013035. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000430
- Alsayed, S.H., Al-Salloum, Y.A., Almusallam, T.H. and Amjad, M.A. (1999), "Concrete columns reinforced by GFRP Rods", Proceedings of the FRPRCS-4.
- AS 1012.9-1999 (1999), Methods of testing concrete, Method 9: Determination of the compressive strength of concrete specimens; Standards Australia. Sydney, Australia.
- AS 1391-2007 (2007), Metallic materials - Tensile testing at ambient temperature, Standards Australia, Sydney, Australia.
- ASTM D695-10 (2010), Standard Test Method for Compressive Properties of Rigid Plastics; American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, USA.
- ASTM D7205/D7205M-11 (2011), Standard Test Method for tensile properties of Fibre Reinforced Polymer Matrix Composite Bars; American Society for Testing and Materials, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: USA.
- Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high strength concrete filled steel tubular columns", Steel Compos. Struct., Int. J., 19(4), 967-999. https://doi.org/10.12989/scs.2015.19.4.967
- Chaallal, O. and Benmokrane, B. (1993), "Physical and mechanical performance of an innovative glass fibre reinforced plastic rod", Can. J. Civil Eng., 20(2), 254-268. https://doi.org/10.1139/l93-031
- CSA-S806-12 (2012), Design and construction of building components with fibre reinforced polymers; Canadian Standards Association, ON, Canada.
- CST (2014), CST COMPOSITES, Caringbah NSW 1495, Australia. URL: http://www.cstcomposites.com/products-andservices/tubes-rods-and-components/
- Deitz, D., Harik, I. and Gesund, H. (2003), "Physical properties of glass fibre reinforced polymer rebars in compression", J. Compos. Constr., 7(4), 363-366. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:4(363)
- De Luca, A., Matta, F. and Nanni, A. (2010), "Behaviour of full scale glass fibre reinforced polymer reinforced concrete columns under axial load", ACI Struct. J., 107(5), 589-596.
- Hadhood, A., Mohamed, H. and Benmokrane, B. (2016), "Axial load-moment interaction diagram of circular concrete columns reinforced with CFRP bars and spirals: Experimental and theoretical investigations", J. Compos. Constr.
- Hadi, M.N.S., Pham, T. and Lei, X. (2013), "New method of strengthening reinforced concrete square columns by circularizing and wrapping with Fibre-Reinforced Polymer or Steel Straps", J. Compos. Constr., 17(2), 229-238. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000335
- Hadi, M.N.S., Khan, Q.S. and Sheikh, M.N. (2016), "Axial and flexural behaviour of unreinforced and FRP bar reinforced circular concrete filled FRP tube columns", Constr. Build. Mater., 122, 43-53. https://doi.org/10.1016/j.conbuildmat.2016.06.044
- Hadi, M.N.S., Karim, H. and Sheikh, M.N. (2017), "Experimental investigations on circular concrete columns reinforced with GFRP bars and helices under different loading conditions", J. Compos. Constr.
- Hong, W.K. and Kim, C. (2004), "Behaviour of concrete columns confined by carbon composites tubes", Can. J. Civil Eng., 31(2), 178-188. https://doi.org/10.1139/l03-078
- ISO 10406-1-15 (2015), Fibre reinforced polymer (FRP) reinforcement of concrete - Test methods - Part 1: FRP bars and grids; International Standard, Switzerland.
- Khan, Q.S., Sheikh, M.N. and Hadi, M.N.S. (2016), "Axial compressive behaviour of circular CFFT: Experimental database and design-oriented model", Steel Compos. Struct., Int. J., 21(4), 921-947. https://doi.org/10.12989/scs.2016.21.4.921
- Khan, Q.S., Sheikh, M.N. and Hadi, M. (2017), "Axial-Flexural interactions of GFRP-CFFT columns with and without reinforcing GFRP bars", J. Compos. Constr., 21(3), 04016109. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000771
- Khan, Q.S., Sheikh, M.N. and Hadi, M. (2018a), "Predicting strength and strain enhancement ratios of circular fiberreinforced polymer tube confined concrete under axial compression using artificial neural networks", Adv. Struct. Eng., 1-18.
- Khan, Q.S., Sheikh, M.N. and Hadi, M. (2018b), "Concrete filled carbon FRP tube (CFRP-CFFT) columns with and without CFRP reinforcing bars: Axial and flexural interactions", J. Compos. Part B: Eng., 133, 42-52. https://doi.org/10.1016/j.compositesb.2017.09.025
- Kobayashi, K. and Fujisaki, T. (1995), "Compressive behaviour of FRP reinforcement in non-prestressed concrete members", Proceedings of the Second International RILEM Symposium (FRPRCS-2), L.Taerwe, Editor.
- Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete", Constr. Build. Mater., 17(6-7), 471-489. https://doi.org/10.1016/S0950-0618(03)00045-X
- Mirmiran, A., Shahawy, M., Samaan, M., El Echary, H., Mastrapa, J.C. and Pico, O. (1998), "Effect of column parameters on FRP confined concrete", J. Compos. Constr., 2(4), 175-185. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(175)
- Mohamed, H. and Masmoudi, R. (2008), "Compressive behaviour of reinforced concrete filled FRP tubes", ACI-SP, SP-257, 91-108.
- Mohamed, H. and Masmoudi, R. (2010), "Axial load capacity of concrete-filled FRP tube columns: Experimental versus theoretical predictions", J. Compos. Constr., 14(2), 231-243. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000066
- Mohamed, H.M., Afifi, M.Z. and Benmokrane, B. (2014), "Performance evaluation of concrete columns reinforced longitudinally with FRP bars and confined with FRP hoops and spirals under axial load", J. Bridge Eng., 19(7), 04014020. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000590
- Ozbakkaloglu, T. (2013), "Compressive behaviour of concretefilled FRP tube columns: Assessment of critical column parameters", Eng. Struct., 51, 188-199. https://doi.org/10.1016/j.engstruct.2013.01.017
- Ozbakkaloglu, T. and Oehlers, D.J. (2008), "Concrete filled square and rectangular FRP Tubes under axial compression", J. Compos. Constr., 12(4), 469-477. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:4(469)
- Ozbakkaloglu, T. and Saatcioglu, M. (2004), "Rectangular stress block for high strength concrete", ACI Struct. J., 101(4), 475-483.
- Ozbakkaloglu, T. and Vincent, T. (2013), "Axial compressive behaviour of circular high strength concrete filled FRP tubes", J. Compos. Constr., 04013037-1-11. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000410
- Pantelides, C., Gibbons, M. and Reaveley, L. (2013), "Axial load behaviour of concrete columns confined with GFRP spirals", J. Compos. Constr., 17(3), 305-313. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000357
- Park, J. and Yoo, J. (2015), "Flexural and compression behavior for steel structures strengthened with Carbon Fiber Reinforced Polymers (CFRPs) sheet", Steel Compos. Struct., Int. J., 19(2), 441-465. https://doi.org/10.12989/scs.2015.19.2.441
- Park, J.H., Jo, B.W., Yoon, S.J. and Park, S.K. (2011), "Experimental investigation on the structural behaviour of concrete filled FRP tubes with/without steel rebar", KSCE J. Civil Eng., 15, 337-345. https://doi.org/10.1007/s12205-011-1040-0
- Ramezanpour, M., Morshed, R. and Eslami, A. (2018), "Experimental investigation on optimal shear strengthening of RC beams using NSM GFRP bars", Struct. Eng. Mech., Int. J., 67(1), 45-52.
- Richard, R.M. and Abbott, B.J. (1975), "Versatile elastic plastic stress strain formula", J. Eng. Mech. Div., 101, 511-515. https://doi.org/10.1061/JMCEA3.0002047
- Samaan, M., Mirmiran, A. and Shahawy, M. (1998), Model of concrete confined by Fibre composites", J. Struct. Eng., 124(9), 1025-1031. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1025)
- Shahraki, M., Sohrabi, M.R., Azizyan, G.R. and Narmashiri, K. (2018), "Experimental and numerical investigation of strengthened deficient steel SHS columns under axial compressive loads", Struct. Eng. Mech., Int. J., 67(2), 207-217.
- Thomas, J. and Ramadass, S. (2015), "Design for shear strength of concrete beams longitudinally reinforced with GFRP bars", Struct. Eng. Mech., Int. J., 53(1), 41-55. https://doi.org/10.12989/sem.2015.53.1.041
- Tobbi, H., Farghaly, A.S. and Benmokrane, B. (2012), "Concrete columns reinforced longitudinally and transversally with glass Fibre-Reinforced Polymer bars", ACI Struct. J., 109(4), 551-558.
- Vincent, T. and Ozbakkaloglu, T. (2013a), "Influence of concrete strength and confinement method on axial compressive behaviour of FRP confined high and ultra-high strength concrete", Compos. Part B: Eng., 50, 413-428. https://doi.org/10.1016/j.compositesb.2013.02.017
- Vincent, T. and Ozbakkaloglu, T. (2013b), "Influence of fibre orientation and specimen end condition on axial compressive behaviour of FRP confined concrete", Constr. Build. Mater., 47, 814-826. https://doi.org/10.1016/j.conbuildmat.2013.05.085
- V-ROD (2012), Composite reinforcing rods technical data sheet, Largs Bay, SA, Australia.
- Wang, W., Sheikh, M.N., Hadi, M.N.S., Gao, D. and Chen, G. (2017), "Behaviour of concrete encased concrete filled FRP tube (CCFT) columns under axial compression", Eng. Struct., 147, 256-268. https://doi.org/10.1016/j.engstruct.2017.05.061
- Wang, W., Martin, P.R., Sheikh, M.N. and Hadi, M.N.S. (2018), "Eccentrically loaded FRP confined concrete with different wrapping schemes", J. Compos. Constr., 22(6), 04018056. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000898