DOI QR코드

DOI QR Code

Measurement of Communication Performance for Application of LPWA in Industrial Field

산업현장의 LPWA 적용을 위한 건물 내부 통신 성능 측정

  • Kwon, Hyuk (Department of Mechatronics Engineering, Korea University of Technology and Education) ;
  • Jin, Kyoung-Bog (Department of Mechatronics Engineering, Korea University of Technology and Education) ;
  • Oh, Chang-Heon (Department of Electrical, Electronics and Communication Engineering, Korea University of Technology and Education)
  • 권혁 (한국기술교육대학교 메카트로닉스공학부) ;
  • 진경복 (한국기술교육대학교 메카트로닉스공학부) ;
  • 오창헌 (한국기술교육대학교 전기전자통신공학부)
  • Received : 2019.01.15
  • Accepted : 2019.02.26
  • Published : 2019.02.28

Abstract

LPWA is a cost-effective and time-saving technology with wide coverage. However, the LPWA is an ISM band that uses UHF radio waves, and its performance is very poor indoors because of its strong linearity. But, because of the possibility of achieving high performance compared to other communication in the room, this paper has studied the indoor communication performance by applying LoRa in LPWA technologies. After installing the data receiving module on the 4th floor, the transmission module was placed at the end of the building from the same floor to the 1st floor, and the data was collected. As a results, it installed on the 1st floor can be collected data with 98 ~ 99% probability, and the lowest RSSI is about -116dBm. Thus, considering the specification of LoRa with a maximum reception sensitivity -136dBm when the spreading factor is 12, the application of LPWA in the industrial field can be fully considered.

LPWA는 넓은 커버리지를 통해 구축비용 및 시간이 절감되는 기술이다. 하지만 LPWA는 UHF 전파를 사용하는 ISM 대역으로 직진성이 강해 실내에서는 성능이 매우 떨어지지만 실내에서도 다른 통신에 비해 높은 성능을 낼 수 있는 가능성이 있기 때문에 본 논문에서는 LPWA 기술 중 LoRa를 적용하여 실내 통신 성능을 측정하는 연구를 진행하였다. 이를 위해 4층에 데이터 수신 모듈을 설치한 후 동일 층부터 1층까지 건물의 끝에 송신 모듈을배치한 후 데이터를 수집하였다. 실험결과 1층 송신 모듈의 데이터를 98~99% 확률로 수집 가능하였으며 최저 RSSI는 약 -116 dBm을 나타내었다. 따라서 확산인자가 12일 때 최대 수신감도 -136 dBm을 갖는 LoRa의 스펙을 고려할 경우 산업현장 건물 내부의 LPWA 적용을 충분히 고려할 수 있을 것으로 기대된다.

Keywords

HHHHBI_2019_v23n1_90_f0001.png 이미지

그림 1. 실험에 사용된 Private LoRa 모듈 Fig. 1. The Private LoRa module used in the experiment.

HHHHBI_2019_v23n1_90_f0002.png 이미지

그림 2. LoRa Class A의 동작 방식 Fig. 2. Behavior of LoRa class A.

HHHHBI_2019_v23n1_90_f0003.png 이미지

그림 3. LoRa Class B의 동작 방식 Fig. 3. Behavior of LoRa class B.

HHHHBI_2019_v23n1_90_f0004.png 이미지

그림 4. LoRa Class C의 동작 방식 Fig. 4. Behavior of LoRa class C.

HHHHBI_2019_v23n1_90_f0005.png 이미지

그림 5. 실험 건물 내부 구성도 및 모듈 배치 위치 Fig. 5. Structure of the experimental building and location of module placement.

HHHHBI_2019_v23n1_90_f0006.png 이미지

그림 6. 게이트웨이와 동일 층 실험 결과 Fig. 6. The same floor experiment results as the gateway.

HHHHBI_2019_v23n1_90_f0007.png 이미지

그림 7. 3층 실험 결과 Fig. 7. 3rd floor experiment result.

HHHHBI_2019_v23n1_90_f0008.png 이미지

그림 8. 2층 실험 결과 Fig. 8. 2nd floor experiment result.

HHHHBI_2019_v23n1_90_f0009.png 이미지

그림 9. 1층 실험 결과 Fig. 9. 1st floor experiment result.

표 1. 전파의 분류 Table 1. Classification of radio waves.

HHHHBI_2019_v23n1_90_t0001.png 이미지

표 2. LoRaWANTM 특징 Table 2. LoRaWANTM Features.

HHHHBI_2019_v23n1_90_t0002.png 이미지

표 3. RF 설정 Parameter Table 3. RF Parameter Setting.

HHHHBI_2019_v23n1_90_t0003.png 이미지

References

  1. G. Peralta, M. Iglesias-Urkia, M. Barcelo, R. Gomez, A. Moran, and J. Bilbao, "Fog computing based efficient IoT scheme for the Industry 4.0," in Proceeding of 2017 IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics(ECMSM), Donostia-San Sebastian: Spain, pp.1-6, 2017.
  2. C. Scheuermann, S. Verclas, and B. Bruegge, "Agile factory -An example of an Industry 4.0 manufacturing process," in Proceeding of 2015 IEEE 3rd International Conference on Cyber-Physical Systems, Networks, and Applications, Hong Kong: China, pp.43-47, 2015.
  3. X. Li, D. Li, J. Wan, A. V. Vasilakos, C. F. Lai, and S. Wang, “A review of industrial wireless networks in the context of Industry 4.0,” Wireless Networks, Vol. 23, No. 1, pp. 23-41, 2017. https://doi.org/10.1007/s11276-015-1133-7
  4. R. S. Sinha, Y. Wei, and S. H. Hwang "A survey on LPWA technology: LoRa and NB-IoT," Ict Express, Vol. 3, No. 1, pp. 14-21, 2017. https://doi.org/10.1016/j.icte.2017.03.004
  5. U. Raza, P. Kulkarni, and M. Sooriyabandara, "Low power wide area networks: An overview," IEEE Communications Surveys & Tutorials, Vol. 19, No. 2, pp. 855-873, 2017. https://doi.org/10.1109/COMST.2017.2652320
  6. P. Thubert, A. Pelov, and S. Krishnan, "Low-power wide-area networks at the IETF," IEEE Communications Standards Magazine, Vol. 1, No. 1, pp. 76-79, 2017. https://doi.org/10.1109/MCOMSTD.2017.1600002ST
  7. C. S. Yoon, Performance Improvement of the UHF-Band RFID Reader System in Fading Channel Environments, M.S. dissertation, Hanyang University, Seoul, Korea, 2008.
  8. J. G. Lee and Y. S. Lee, "A study on the technology development of user-based home automation service," Journal of the Korea Academia-Industrial Cooperation Society, Vol. 18, No. 3, pp. 327-332, 2017. https://doi.org/10.5762/KAIS.2017.18.3.327
  9. U. Noreen, A. Bounceur, and L. Clavier, "A study of LoRa low power and wide area network technology", in Proceedings of the Advanced Technologies for Signal and Image Processing(ATSIP), 2017 International Conference, Fez: Morocco, 2017.
  10. G. A. Akpakwu, B. J. Silva, G. P. Hancke, and A. M. Abu-Mahfouz, "A survey on 5G networks for the internet of things: communication technologies and challenges," IEEE Access, Vol. 6, pp. 3619-3647, 2017. https://doi.org/10.1109/access.2017.2779844
  11. D. Ismail, M. Rahman, and A. Saifullah, "Low-power wide-area networks: opportunities, challenges, and directions," in Proceedings of the 19th International Conference on Distributed Computing and Networking(ICDCN), Varanasi: India, 2018.
  12. SK Telecom 5G Tech Lab., Low power IoT LoRa device technical requirements, SK Telecom, Technical Requirements LoRa-1.8, July 2016.