Fig. 1. Overview of variogram modeling
Fig. 2. Examples of variogram modeling depending on distribution types
Fig. 3. Overview of artificial neural network
Fig. 4. Ground profile information in boring region
Fig. 5. Result of variogram modeling
Fig. 6. Architecture of artificial neural network
Fig. 7. Result of variogram modeling
Table 1. RMSE results of estimated data
References
- Dai, F., Zhou, Q., Lv, Z., Wang, X. and Liu, G. (2014), Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau, Ecological Indicators 45, pp. 184-194. https://doi.org/10.1016/j.ecolind.2014.04.003
- Deutsch, C. V. (1996), Correcting for negative weights in ordinary kriging, Computers & Geosciences, 22(7), pp. 765-773. https://doi.org/10.1016/0098-3004(96)00005-2
- Goodfellow, I., Bengio, Y. and Courville, A. (2016), Deep Learning, MIT Press, Cambridge, MA. pp. 161-263.
- Han, W., Wu, C., Zhang, X., Sun, M. and Min, G. (2016), Speech enhancement based on improved deep neural networks with MMSE pretreatment features, in Proc. IEEE 13th International Conference on Signal Processing (ICSP), Chengdu, China, DOI: 10.1109/ICSP.2016.7878006.
- Ioffe, S. and Szegedy, C. (2015), Batch normalization: accelerating deep network training by reducing internal covariate shift, in Proc. the 32nd International Conference on Machine Learning (ICML), Lille, France, pp. 448-456.
- Isaaks, E. H. and Srivastava, R. M. (1989), An Introduction to Applied Geostatistics, Oxford University Press, New York, NY. pp. 278-322.
- Kingma, D. P. and Ba, J. L. (2015), ADAM: a method for stochastic optimization, in Proc. 3rd International Conference on Learning Representations (ICLR), San Diego, CA, pp. 1-15.
- Min, D. H. and Yoon, H. K. (2018), Method for Establishment of High Reliable Soil Depth Modeling, J. Korean Soc. Hazard Mitig. 18(2), pp. 307-315. https://doi.org/10.9798/kosham.2018.18.2.307
- Nair, V. and Hinton, G. E. (2010), Rectified linear units improve restricted boltzmann machines, in Proc. the 27th International Conference on Machine Learning (ICML), Haifa, Israel, pp. 807-814.
- Rahman, H. S., Alireza, K. and Reza, G. (2010), Application of Artificial Neural Network, Kriging, and Inverse Distance Weighting Models for Estimation of Scour Depth around Bridge Pier with Bed Sill, J. Software Engineering & Application, 3, pp. 944-964. https://doi.org/10.4236/jsea.2010.310112
- Samui, P. and Sitharam, T. G. (2010), Site Characterization Model Using Artificial Neural Network and Kriging, Int. J. Geomech. 10(5), pp. 171-180. https://doi.org/10.1061/(ASCE)1532-3641(2010)10:5(171)
- Seo, Y., Kim, S. and Singh, V. P. (2015), Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach, Water Resour Manage, 29, pp. 2189-2204. https://doi.org/10.1007/s11269-015-0935-9
- Tapoglou, E., Karatzas, G. P., Trichakis, I. C. and Varouchakis, E. A. (2014), A spatio-temporal hybrid neural network-kriging model for groundwater level simulation, Journal of Hydrology, 519, pp. 3193-3203. https://doi.org/10.1016/j.jhydrol.2014.10.040