DOI QR코드

DOI QR Code

Photocatalytic Performance of Graphene-TiO2 Hybrid Nanomaterials Under Visible Light

  • Park, Jaehyeung (Division of Advanced Materials Engineering, Dong-Eui University)
  • 투고 : 2019.01.03
  • 심사 : 2019.01.22
  • 발행 : 2019.03.01

초록

This study describes the development of graphene-$TiO_2$ conjugates for the enhancement of the photocatalytic efficiency of $TiO_2$. Graphene-based hybrid nanomaterials have attracted considerable attention because of the unique and advantageous properties of graphene. In the proposed hybrid nanomaterial, graphene serves as an electron acceptor to ensure fast charge transfer. Effective charge separation can, therefore, be achieved to slow down electron-hole recombination. This results in an enhancement of the photocatalytic activity of $TiO_2$. In addition, increased adsorption and interactions with the adsorbed reagents also lead to an improvement in the photocatalytic activity of graphene-$TiO_2$ hybrid nanomaterials. The acquired result is encouraging in that the photocatalytic activity of $TiO_2$ was initiated using visible light (630 nm) instead of the typical UV light.

키워드

JJJRCC_2019_v32n2_161_f0002.png 이미지

Fig. 1. TEM images of (a) PFPA-TiO2, (b) graphene flake, (c) G-TiO2, and IR spectra of (d) PFPA-TiO2.

JJJRCC_2019_v32n2_161_f0003.png 이미지

Fig. 2. UV-vis spectra of (a) TiO2, (b) TiO2-PFPA, and (c) G-TiO2.

JJJRCC_2019_v32n2_161_f0004.png 이미지

Fig. 4. Photocatalytic activity measurement, measured as I/I0 (excitation 630 nm).

JJJRCC_2019_v32n2_161_f0005.png 이미지

Fig. 3. (a) Photocatalysis mechanism and (b) reaction of SOSG with singlet oxygen. The endoperoxide of SOSG product is highly fluorescent (excitation/emission maxima ~504/525 nm).

참고문헌

  1. P. V. Kamat, J. Phys. Chem. Lett., 2, 242 (2011). [DOI: https://doi.org/10.1021/jz101639v]
  2. H. Zhang, X. Lv, Y. Li, Y. Wang, and J. Li, ACS Nano, 4, 380 (2009). [DOI: https://doi.org/10.1021/nn901221k]
  3. Y. Zhang, Z. R. Tang, X. Fu, and Y. J. Xu, ACS Nano, 5, 7426 (2011). [DOI: https://doi.org/10.1021/nn202519j]
  4. R. Long, N. J. English, and O. V. Prezhdo, J. Am. Chem. Soc., 134, 14238 (2012). [DOI: https://doi.org/10.1021/ja3063953]
  5. S. D. Perera, R. G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, and K. J. Balkus Jr, ACS Catal., 2, 949 (2012). [DOI: https://doi.org/10.1021/cs200621c]
  6. B. Qiu, M. Xing, and J. Zhang, J. Am. Chem. Soc., 136, 5852 (2014). [DOI: https://doi.org/10.1021/ja500873u]
  7. R. Mo, Z. Lei, K. Sun, and D. Rooney, Adv. Mater., 26, 2084 (2014). [DOI: https://doi.org/10.1002/adma.201304338]
  8. I. V. Lightcap and P. V. Kamat, J. Am. Chem. Soc., 134, 7109 (2012). [DOI: https://doi.org/10.1021/ja3012929]
  9. J. Park, T. Jin, C. Liu, G. Li, and M. Yan, ACS Omega, 1, 351 (2016). [DOI: https://doi.org/10.1021/acsomega.6b00113]
  10. J. Park and M. Yan, Nanotechnol. Rev., 5, 417 (2016). [DOI: https://doi.org/10.1515/ntrev-2015-0043]
  11. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev., 95, 735 (1995). [DOI: https://doi.org/10.1021/cr00035a013]
  12. K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys., 44, 8269 (2005). [DOI: https://doi.org/10.1143/JJAP.44.8269]
  13. J. S. Lee, K. H. You, and C. B. Park, Adv. Mater., 24, 1084 (2012). [DOI: https://doi.org/10.1002/adma.201104110]
  14. Y. B. Tang, C. S. Lee, J. Xu, Z. T. Liu, Z. H. Chen, Z. He, Y. L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H. M. Cheng, W. J. Zhang, I. Bello, and S. T. Lee, ACS Nano, 4, 3482 (2010). [DOI: https://doi.org/10.1021/nn100449w]
  15. C. Nethravathi and M. Rajamathi, Carbon, 46, 1994 (2008). [DOI: https://doi.org/10.1016/j.carbon.2008.08.013]
  16. C. Gomez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett., 7, 3499 (2007). [DOI: https://doi.org/10.1021/nl072090c]
  17. G. Williams, B. Seger, and P. V. Kamat, ACS Nano, 2, 1487 (2008). [DOI: https://doi.org/10.1021/nn800251f]
  18. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, and Y. Feng, ACS Nano, 4, 6425 (2010). [DOI: https://doi.org/10.1021/nn102130m]
  19. L. Liu and M. Yan, Angew. Chem. Int. Ed., 45, 6207 (2006). [DOI: https://doi.org/10.1002/anie.200602097]
  20. H. Wang, J. Ren, A. Hlaing, and M. Yan, J. Colloid Interface Sci., 354, 160 (2011). [DOI: https://doi.org/10.1016/j.jcis.2010.10.018]
  21. T. Kubo, X. Wang, Q. Tong, and M. Yan, Langmuir, 27, 9372 (2011). [DOI: https://doi.org/10.1021/la201324h]
  22. J. Park, H.S.N. Jayawardena, X. Chen, K. W. Jayawardana, M. Sundhoro, E. Ada, and M. Yan, Chem. Commun., 51, 2882 (2015). [DOI: https://doi.org/10.1039/C4CC07936A]
  23. G. Munuera, A. Navio, and V. Rives-Arnau, J. Chem. Soc., Faraday Trans. 1, 77, 2747 (1981). [DOI: https://doi.org/10.1039/f19817702747]
  24. S. Wang, R. Gao, F. Zhou, and M. Selke, J. Mater. Chem., 14, 487 (2004). [DOI: https://doi.org/10.1039/b311429e]
  25. X. Ragas, A. Jimenez-Banzo, D. Sanchez-Garcia, X. Batllori, and S. Nonell, Chem. Commun., 0, 2920 (2009). [DOI: https://doi.org/10.1039/b822776d]
  26. A. Gollmer, J. Arnbjerg, F. H. Blaikie, B. W. Pedersen, T. Breitenbach, K. Daasbjerg, M. Glasius, and P. R. Ogilby, Photochem. Photobiol., 87, 671 (2011). [DOI: https://doi.org/10.1111/j.1751-1097.2011.00900.x]