References
- Poole DC. Current concepts of oxygen transport during exercise. Equine Comp Exerc Physiol 2004;1:5-22. https://doi.org/10.1079/ECP20036
- Kim H, Lee T, Park W, et al. Peeling back the evolutionary layers of molecular mechanisms responsive to exercise-stress in the skeletal muscle of the racing horse. DNA Res 2013;20:287-98. https://doi.org/10.1093/dnares/dst010
- Park KD, Park J, Ko J, et al. Whole transcriptome analyses of six thoroughbred horses before and after exercise using RNASeq. BMC Genomics 2012;13:473. https://doi.org/10.1186/1471-2164-13-473
- Capomaccio S, Cappelli K, Barrey E, et al. Microarray analysis after strenuous exercise in peripheral blood mononuclear cells of endurance horses. Anim Genet 2010;41:166-75. https://doi.org/10.1111/j.1365-2052.2010.02129.x
- Eivers SS, McGivney BA, Fonseca RG, et al. Alterations in oxidative gene expression in equine skeletal muscle following exercise and training. Physiol Genomics 2010;40:83-93. https://doi.org/10.1152/physiolgenomics.00041.2009
- Park JW, Song KD, Kim NY, et al. Molecular analysis of alternative transcripts of equine AXL receptor tyrosine kinase gene. Asian-Australas J Anim Sci 2017;30:1471-7. https://doi.org/10.5713/ajas.17.0409
-
Cho HW, Shin S, Park JW, et al. Molecular characterization and expression analysis of the peroxisome proliferator activated receptor delta (
$PPAR{\delta}$ ) gene before and after exercise in horse. Asian-Australas J Anim Sci 2015;28:697-702. https://doi.org/10.5713/ajas.14.0575 - Park JW, Choi JY, Hong SA, et al. Exercise induced upregulation of glutamate-cysteine ligase catalytic subunit and glutamatecysteine ligase modifier subunit gene expression in Thoroughbred horses. Asian-Australas J Anim Sci 2017;30:728-35. https://doi.org/10.5713/ajas.16.0776
- Pedersen BK, Akerstrom TC, Nielsen AR, Fischer CP. Role of myokines in exercise and metabolism. J Appl Physiol 2007;103:1093-8. https://doi.org/10.1152/japplphysiol.00080.2007
- Jonsdottir I, Schjerling P, Ostrowski K, et al. Muscle contractions induces interleukin-6 mRNA production in rat skeletal muscles. J Physiol (Lond) 2000;528:157-63. https://doi.org/10.1111/j.1469-7793.2000.00157.x
- Akerstrom TC, Steensberg A, Keller P, et al. Exercise induces interleukin-8 expression in human skeletal muscle. J Physiol 2005;563:507-16. https://doi.org/10.1113/jphysiol.2004.077610
- Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Chemokines are elevated in plasma after strenuous exercise in humans. Eur J Appl Physiol 2001;84:244-5. https://doi.org/10.1007/s004210170012
- Peake JM, Roberts LA, Figueiredo VC, et al. The effects of cold water immersion and active recovery on inflammation and cell stress responses in human skeletal muscle after resistance exercise. J Physiol 2017;595:695-711. https://doi.org/10.1113/JP272881
- Croisier JL, Camus G, Venneman I, et al. Effects of training on exercise-induced muscle damage and interleukin 6 production. Muscle Nerve 1999;22:208-12. https://doi.org/10.1002/(SICI)1097-4598(199902)22:2<208::AID-MUS8>3.0.CO;2-B
- Pedersen BK, Steensberg A, Fischer C, et al. The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc 2004;63:263-7. https://doi.org/10.1079/PNS2004338
- Wolsk E, Mygind H, Grondahl TS, Pedersen BK, van Hall G. IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am J Physiol Endocrinol Metab 2010;299:E832-40. https://doi.org/10.1152/ajpendo.00328.2010
- Steensberg A. The role of IL-6 in exercise-induced immune changes and metabolism. Exerc Immunol Rev 2003;9:40-7.
- Koch AE, Polverini PJ, Kunkel SL, et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 1992;258:1798-801. https://doi.org/10.1126/science.1281554
- Catoire M, Mensink M, Kalkhoven E, Schrauwen P, Kersten S. Identification of human exercise-induced myokines using secretome analysis. Physiol Genomics 2014;46:256-67. https://doi.org/10.1152/physiolgenomics.00174.2013
- Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG. B cells and professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2001;2:1126-32. https://doi.org/10.1038/ni735
- Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000;12:121-7. https://doi.org/10.1016/S1074-7613(00)80165-X
- Yahiaoui L, Gvozdic D, Danialou G, Mack M, Petrof BJ. CC family chemokines directly regulate myoblast responses to skeletal muscle injury. J Physiol 2008;586:3991-4004. https://doi.org/10.1113/jphysiol.2008.152090
- Warren GL, O'Farrell L, Summan M, et al. Role of CC chemokines in skeletal muscle functional restoration after injury. Am J Physiol Cell Physiol 2004;286:C1031-6. https://doi.org/10.1152/ajpcell.00467.2003
- Pourteymour S, Eckardt K, Holen T, et al. Global mRNA sequencing of human skeletal muscle: search for novel exerciseregulated myokines. Mol Metab 2017;6:352-65. https://doi.org/10.1016/j.molmet.2017.01.007
- Beavers KM, Brinkley TE, Nicklas BJ. Effect of exercise training on chronic inflammation. Clin Chim Acta 2010;411:785-93. https://doi.org/10.1016/j.cca.2010.02.069
- Niess AM, Simon P. Response and adaptation of skeletal muscle to exercise-the role of reactive oxygen species. Front Biosci 2007;12:4826-38. https://doi.org/10.2741/2431
- Peake J, Nosaka K, Suzuki K. Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 2005;11:64-85.
- Seale P, Sabourin LA, Girgis-Gabardo A, et al. Pax7 is required for the specification of myogenic satellite cells. Cell 2000;102:777-86. https://doi.org/10.1016/S0092-8674(00)00066-0
Cited by
- Comparison for immunophysiological responses of Jeju and Thoroughbred horses after exercise vol.33, pp.3, 2019, https://doi.org/10.5713/ajas.19.0260
- Validation of exercise-response genes in skeletal muscle cells of Thoroughbred racing horses vol.34, pp.1, 2019, https://doi.org/10.5713/ajas.18.0749
- Epigenetic control of exercise adaptations in the equine athlete: Current evidence and future directions vol.53, pp.3, 2019, https://doi.org/10.1111/evj.13320
- Regulation of toll-like receptors expression in muscle cells by exercise-induced stress vol.34, pp.10, 2021, https://doi.org/10.5713/ab.20.0484