DOI QR코드

DOI QR Code

Fabrication of Porous Ni by Freeze Drying and Hydrogen Reduction of NiO/Camphene Slurry

NiO/camphene 슬러리의 동결건조 및 수소환원 공정에 의한 Ni 다공체 제조

  • Jeong, Jae-Hun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Hyun, Chang-Yong (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 정재헌 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과) ;
  • 현창용 (서울과학기술대학교 신소재공학과)
  • Received : 2019.01.02
  • Accepted : 2019.01.28
  • Published : 2019.02.28

Abstract

In this study, freeze drying of a porous Ni with unidirectionally aligned pore channels is accomplished by using a NiO powder and camphene. Camphene slurries with NiO content of 5 and 10 vol% are prepared by mixing them with a small amount of dispersant at $50^{\circ}C$. Freezing of a slurry is performed at $-25^{\circ}C$ while the growth direction of the camphene is unidirectionally controlled. Pores are generated subsequently by sublimation of the camphene during drying in air for 48 h. The green bodies are hydrogen-reduced at $400^{\circ}C$ and then sintered at $800^{\circ}C$ and $900^{\circ}C$ for 1 h. X-ray diffraction analysis reveals that the NiO powder is completely converted to the Ni phase without any reaction phases. The sintered samples show large pores that align parallel pores in the camphene growth direction as well as small pores in the internal walls of large pores. The size of large and small pores decreases with increasing powder content from 5 to 10 vol%. The influence of powder content on the pore structure is explained by the degree of powder rearrangement in slurry and the accumulation behavior of powders in the interdendritic spaces of solidified camphene.

Keywords

References

  1. P. S. Liu and K. M. Liang: J. Mater. Sci., 36 (2001) 5059. https://doi.org/10.1023/A:1012483920628
  2. J. Banhart: Prog. Mater. Sci., 46 (2001) 559. https://doi.org/10.1016/S0079-6425(00)00002-5
  3. N.-H. Kim, H. Song, S.-C. Choi and Y.-H. Choa: J. Korean Powder Metall. Inst., 16 (2009) 262 (Korean). https://doi.org/10.4150/KPMI.2009.16.4.262
  4. Z.-Y. Deng, J.-F. Yang, Y. Beppu, M. Ando and T. Ohji: J. Am. Ceram. Soc., 85 (2002) 1961. https://doi.org/10.1111/j.1151-2916.2002.tb00388.x
  5. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki: J. Am. Ceram. Soc., 84 (2001) 230. https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  6. S.-T. Oh, S.-Y. Chang and M.-J. Suk: Trans. Nonferrous Met. Soc. China, 22 (2012) s688. https://doi.org/10.1016/S1003-6326(12)61787-7
  7. J.-H. Kim, S.-T. Oh and C.-Y. Hyun: J. Korean Powder Metall. Inst., 23 (2016) 49 (Korean). https://doi.org/10.4150/KPMI.2016.23.1.49
  8. S.-T. Oh, Y. D. Kim and M.-J. Suk: Mater. Lett., 139 (2015) 268. https://doi.org/10.1016/j.matlet.2014.10.097
  9. S.-K. Ryi, J.-S. Park, S.-J. Park, D.-G. Lee and S.-H. Kim: J. Membr. Sci., 299 (2007) 174. https://doi.org/10.1016/j.memsci.2007.04.042
  10. S. D. Robertson, B. D. McNicol, J. H. De Baas, S. C. Kloet and J. W. Jenkins: J. Catal., 37 (1975) 424. https://doi.org/10.1016/0021-9517(75)90179-7
  11. M. Wisniewska: Powder Technol., 198 (2010) 258. https://doi.org/10.1016/j.powtec.2009.11.016
  12. B. Jankovic, B. Adnadevic and S. Mentus: Chem. Eng. Sci., 63 (2008) 567. https://doi.org/10.1016/j.ces.2007.09.043
  13. D. R. Uhlmann, B. Chalmers and K. A. Jackson: J. Appl. Phys., 35 (1964) 2986. https://doi.org/10.1063/1.1713142
  14. S. Deville, E. Maire, G. Bernard-Granger, A. Lasalle, A. Bogner, C. Gauthier, J. Leloup and C. Guizard: Nature Mater., 8 (2009) 966. https://doi.org/10.1038/nmat2571
  15. K. Araki and J.W. Halloran: J. Am. Ceram. Soc., 87 (2004) 2014. https://doi.org/10.1111/j.1151-2916.2004.tb06353.x