References
- Singh RP, Agarwal R. 2009. Cosmeceuticals and silibinin. Clin. Dermatol. 27: 479-484. https://doi.org/10.1016/j.clindermatol.2009.05.012
- Singh RP, Agarwal R. 2002. Flavonoid antioxidant silymarin and skin cancer. Antioxid. Redox Signal. 4: 655-663. https://doi.org/10.1089/15230860260220166
- Singh RP, Dhanalakshmi S, Tyagi AK, Chan DC, Agarwal C, Agarwal R. 2002. Dietary feeding of silibinin inhibits advance human prostate carcinoma growth in athymic nude mice and increases plasma insulin-like growth factor-binding protein-3 levels. Cancer Res. 62: 3063-3069.
- Singh RP, Deep G, Chittezhath M, Kaur M, Dwyer-Nield LD, Malkinson AM, et al. 2006. Effect of silibinin on the growth and progression of primary lung tumors in mice. J. Natl. Cancer Inst. 98: 846-855. https://doi.org/10.1093/jnci/djj231
- Lahiri-Chatterjee M, Katiyar SK, Mohan RR, Agarwal R. 1999. A flavonoid antioxidant, silymarin, affords exceptionally high protection against tumor promotion in the SENCAR mouse skin tumorigenesis model. Cancer Res. 59: 622-632.
- Zi X, Mukhtar H, Agarwal R. 1997. Novel cancer chemopreventive effects of a flavonoid antioxidant silymarin: inhibition of mRNA expression of an endogenous tumor promoter TNF? Biochem. Biophys. Res. Commun. 239: 334-339. https://doi.org/10.1006/bbrc.1997.7375
- Choi B. 2018. Hair-growth potential of ginseng and its major metabolites: a review on its molecular mechanisms. Int. J. Mol. Sci. 19: 2703. https://doi.org/10.3390/ijms19092703
- Alonso L, Fuchs E. 2006. The hair cycle. J. Cell Sci. 119: 391-393. https://doi.org/10.1242/jcs.02793
- Westgate GE, Botchkareva NV, Tobin DJ. 2013. The biology of hair diversity. Int. J. Cosmetic Sci. 35: 329-336. https://doi.org/10.1111/ics.12041
- Santos Z, Avci P, Hamblin MR. 2015. Drug discovery for alopecia: gone today, hair tomorrow. Expert Opin. Drug Discov. 10: 269-292. https://doi.org/10.1517/17460441.2015.1009892
- Panteleyev AA. 2016. Putting the human hair follicle cycle on the map. J. Invest. Dermatol. 136: 4-6. https://doi.org/10.1016/j.jid.2015.10.052
- Porter RM. 2003. Mouse models for human hair loss disorders. J. Anat. 202: 125-131. https://doi.org/10.1046/j.1469-7580.2003.00140.x
- Topouzi H, Logan NJ, Williams G, Higgins CA. 2017. Methods for the isolation and 3D culture of dermal papilla cells from human hair follicles. Exp. Dermatol. 26: 491-496. https://doi.org/10.1111/exd.13368
- Higgins CA, Chen JC, Cerise JE, Jahoda CAB, Christiano AM. 2013. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc. Natl. Acad. Sci. USA. 110: 19679-19688. https://doi.org/10.1073/pnas.1309970110
- Higgins CA, Richardson GD, Ferdinando D, Westgate GE, Jahoda CAB. 2010. Modelling the hair follicle dermal papilla using spheroid cell cultures. Exp. Dermatol. 19: 546-548. https://doi.org/10.1111/j.1600-0625.2009.01007.x
- Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N, et al. 2009. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 4: 155-169. https://doi.org/10.1016/j.stem.2008.12.009
- Yang C-C, Cotsarelis G. 2010. Review of hair follicle dermal cells. J. Dermatol. Sci. 57: 2-11. https://doi.org/10.1016/j.jdermsci.2009.11.005
-
Zhou L, Yang K, Xu M, Andl T, Millar SE, Boyce S, et al. 2016. Activating
$\beta$ -catenin signaling in CD133-positive dermal papilla cells increases hair inductivity. FEBS J. 283: 2823-2835. https://doi.org/10.1111/febs.13784 - Choi YM, An S, Lee J, Lee JH, Lee JN, Kim YS, et al. 2017. Titrated extract of Centella asiatica increases hair inductive property through inhibition of STAT signaling pathway in three-dimensional spheroid cultured human dermal papilla cells. Biosci. Biotechnol. Biochem. 81: 2323-2329. https://doi.org/10.1080/09168451.2017.1385383
- Manning BD, Toker A. 2017. AKT/PKB signaling: navigating the network. Cell 169: 381-405. https://doi.org/10.1016/j.cell.2017.04.001
- Alfonso M, Richter-Appelt H, Tosti A, Viera MS, Garcia M. 2005. The psychosocial impact of hair loss among men: a multinational European study. Curr. Med. Res. Opin. 21: 1829-1836. https://doi.org/10.1185/030079905X61820
- Upton JH, Hannen RF, Bahta AW, Farjo N, Farjo B, Philpott MP. 2015. Oxidative stress-associated senescence in dermal papilla cells of men with androgenetic alopecia. J. Invest. Dermatol. 135: 1244-1252. https://doi.org/10.1038/jid.2015.28
- Rastegar H, Ashtiani HA, Aghaei M, Barikbin B, Ehsani A. 2015. Herbal extracts induce dermal papilla cell proliferation of human hair follicles. Ann. Dermatol. 27:667-675. https://doi.org/10.5021/ad.2015.27.6.667
- Rho S , Park S , Hwang S , Lee M, Kim C, Lee I, et al. 2005. The hair growth promoting effect of extract and its molecular regulation. J. Dermatol. Sci. 38: 89-97. https://doi.org/10.1016/j.jdermsci.2004.12.025
- Woo H, Lee S, Kim S, Park D, Jung E. 2017. Effect of sinapic acid on hair growth promoting in human hair follicle dermal papilla cells via Akt activation. Arch. Dermatol. Res. 309: 381-388. https://doi.org/10.1007/s00403-017-1732-5
- Kang BM, Kwack MH, Kim MK, Kim JC, S ung YK. 2012. Sphere formation increases the ability of cultured human dermal papilla cells to induce hair follicles from mouse epidermal cells in a reconstitution assay. J. Invest. Dermatol. 132: 237-239. https://doi.org/10.1038/jid.2011.250
- de Lacharriere O, Deloche C, Misciali C, Piraccini BM, Vincenzi C, Bastien P, et al. 2001. Hair diameter diversity: a clinical sign reflecting the follicle miniaturization. Arch. Dermatol. 137: 641-646.
- Whiting DA. 2001. Possible mechanisms of miniaturization during androgenetic alopecia or pattern hair loss. J. Am. Acad. Dermatol. 45: S81-86. https://doi.org/10.1067/mjd.2001.117428
- Kishimoto J, Burgeson RE, Morgan BA. 2000. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 14: 1181-1185.
-
Zhou D, Tan RJ, Fu H, Liu Y. 2015. Wnt/
$\beta$ -catenin signaling in kidney injury and repair: a double-edged sword. Lab. Invest. 96: 156-167. https://doi.org/10.1038/labinvest.2015.153 -
Lu W, Lin C, King TD, Chen H, Reynolds RC, Li Y. 2012. Silibinin inhibits Wnt/
$\beta$ -catenin signaling by suppressing Wnt co-receptor LRP6 expression in human prostate and breast cancer cells. Cell. Signal. 24: 2291-2296. https://doi.org/10.1016/j.cellsig.2012.07.009 -
Kim T, Oh S. 2012. Silybin synergizes with Wnt3a in activation of the Wnt/
$\beta$ -catenin signaling pathway through stabilization of intracellular$\beta$ -catenin protein. Korean J. Microbiol. Biotechnol. 40: 50-56. https://doi.org/10.4014/kjmb.1202.02007 - Meidan VM, Touitou E. 2001. Treatments for androgenetic alopecia and alopecia areata: current options and future prospects. Drugs 61: 53-69. https://doi.org/10.2165/00003495-200161010-00006
- Dinh QQ, Sinclair R. 2007. Female pattern hair loss: current treatment concepts. Clin. Interv. Aging. 2: 189-199.
- Jain R, Monthakantirat O, Tengamnuay P, De-Eknamkul W. 2016. Identification of a new plant extract for androgenic alopecia treatment using a non-radioactive human hair dermal papilla cell-based assay. BMC Complement. Altern. Med. 16: 18.
- Harel S, Higgins CA, Cerise JE, Dai Z, Chen JC, Clynes R, et al. 2015. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci. Adv. 1: e1500973-e1500973. https://doi.org/10.1126/sciadv.1500973
- Murkute A, Sahu M, Mali P, Rangari V. 2010. Development and evaluation of formulations of microbial biotransformed extract of tobacco leaves for hair growth potential. Pharmacognosy Res. 2: 300-303. https://doi.org/10.4103/0976-4836.72328
- Bureau JP, Ginouves P, Guilbaud J, Roux ME. 2003. Essential oils and low-intensity electromagnetic pulses in the treatment of androgen-dependent alopecia. Adv. Ther. 20: 220-229. https://doi.org/10.1007/BF02850093
Cited by
- Protective Role of Nutritional Plants Containing Flavonoids in Hair Follicle Disruption: A Review vol.21, pp.2, 2019, https://doi.org/10.3390/ijms21020523
- Broussonetia papyrifera Promotes Hair Growth Through the Regulation of β-Catenin and STAT6 Target Proteins: A Phototrichogram Analysis of Clinical Samples vol.7, pp.2, 2019, https://doi.org/10.3390/cosmetics7020040
- Health Benefits of Silybum marianum: Phytochemistry, Pharmacology, and Applications vol.68, pp.42, 2019, https://doi.org/10.1021/acs.jafc.0c04791
- Indole Glycosides from Calanthe discolor with Proliferative Activity on Human Hair Follicle Dermal Papilla Cells vol.69, pp.5, 2021, https://doi.org/10.1248/cpb.c21-00006
- Gene expression profile of human follicle dermal papilla cells in response to Camellia japonica phytoplacenta extract vol.11, pp.3, 2019, https://doi.org/10.1002/2211-5463.13076
- Ent-kaurane-type diterpenoids from Isodonis Herba activate human hair follicle dermal papilla cells proliferation via the Akt/GSK-3β/β-catenin transduction pathway vol.75, pp.2, 2019, https://doi.org/10.1007/s11418-020-01477-8
- Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway vol.31, pp.7, 2021, https://doi.org/10.4014/jmb.2101.01032
- A systematic summary of survival and death signalling during the life of hair follicle stem cells vol.12, pp.1, 2019, https://doi.org/10.1186/s13287-021-02527-y