DOI QR코드

DOI QR Code

Effect of IgY on Periodontitis and Halitosis Induced by Fusobacterium nucleatum

  • Wang, Fang (Shanghai University of Medicine and Health Sciences) ;
  • Qiao, Wu (College of Food Science and Technology, Shanghai Ocean University) ;
  • Bao, Bin (College of Food Science and Technology, Shanghai Ocean University) ;
  • Wang, Shujun (Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Huaihai Institute of Technology) ;
  • Regenstein, Joe Mac (Department of Food Science, Cornell University) ;
  • Shi, Yilei (Shanghai MAXAM Company Limited) ;
  • Wu, Wenhui (College of Food Science and Technology, Shanghai Ocean University) ;
  • Ma, Ming (College of Food Science and Technology, Shanghai Ocean University)
  • Received : 2018.10.24
  • Accepted : 2018.12.28
  • Published : 2019.02.28

Abstract

Fusobacterium nucleatum is a morbific agent in periodontitis and halitosis. Egg yolk antibody (IgY) was obtained from egg yolks from chickens stimulated with F. nucleatum. This study was to assess the effectiveness of IgY on periodontitis and halitosis caused by F. nucleatum in vitro and in vivo. The growth of F. nucleatum was inhibited (p <0.05) by different concentrations of IgY in vitro and the results of a Halimeter show volatile sulfur compounds (VSCs) were reduced to $904{\pm}57ppb$ at a concentration 40 mg/ml of IgY. The changes of fatty acids of F. nucleatum were determined using GC-MS. The scores for odor index of rat saliva were decreased. The major constituent of volatile organic compounds (VOCs) including short-chain acids decreased 46.2% in 10 mg/ml IgY, ammonia decreased 70% in 40 mg/ml IgY, while aldehydes and olefine ketones were almost unchanged. The ELISA assay revealed that IL-6 and TNF-${\alpha}$ were decreased after 4 weeks' IgY treatment. Morphometric (X-ray) and histological analyses (HE) showed that IgY reduced alveolar bone loss and collagen fibers became orderly in rat models. As a result, IgY may have the potential to treat periodontitis and halitosis.

Keywords

References

  1. Amou T, Hinode D, Yoshioka M, Grenier D. 2014. Relationship between halitosis and periodontal disease - associated oral bacteria. Int. J. Dent. Hyg. 12: 145-151. https://doi.org/10.1111/idh.12046
  2. Goldberg S, Kozlovsky A, Gordon D, Gelernter I. Sintov A, Rosenberg M. 1994. Cadaverine as a putative component of oral malodor. J. Dent. Res. 73: 1168-1172. https://doi.org/10.1177/00220345940730060701
  3. Phillips M, Herrera J, Krishnan S, Zain M, Greenberg J, Cataneo RN. 1999. Variation in volatile organic compounds in the breath of normal humans. J. Chromatogr. B. Biomed. Sci. Appl. 729: 75-88. https://doi.org/10.1016/S0378-4347(99)00127-9
  4. Oh TJ, Eber R, Wang HL. 2002. Periodontal diseases in the child and adolescent. J. Clin. Periodontol. 29: 400-410. https://doi.org/10.1034/j.1600-051X.2002.290504.x
  5. Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ Jr. 2002. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66: 486-505. https://doi.org/10.1128/MMBR.66.3.486-505.2002
  6. Sato H, Ohkushi T, Kaizu T, Tsunoda M, Sato T. 1980. A study of the mechanism of halitosis occurrence in periodontal patients. Bul. Tokyo Dent. Coll. 21: 271-278.
  7. Yaegaki K, Sanada K. 1992. Biochemical and clinical factors influencing oral malodor in. periodontal. J. Periodontol. 63: 783-789. https://doi.org/10.1902/jop.1992.63.9.783
  8. Kang MS, Kim BG, Chung J, Lee HC, Oh JS. 2006. Inhibitory effect of Weissella cibaria isolates on the production of volatile. J. Clin. Periodontol. 33: 226-232. https://doi.org/10.1111/j.1600-051X.2006.00893.x
  9. Signat B, Roques C, Poulet P, Duffaut D. 2011. Fusobacterium nucleatum in periodontal health and disease. Curr. Issues. Mol. Biol. 13: 25-36.
  10. Han YW, Shi W, Huang GT, Kinder Haake S, Park NH, Kuramitsu H, et al. 2000. Interactions between periodontal bacteria and human oral epithelial cells. Infect. Immun. 68: 3140-3146. https://doi.org/10.1128/IAI.68.6.3140-3146.2000
  11. Handal T, Caugant DA, Olsen I. 2003. Antibiotic resistance in bacteria isolated from subgingival plaque in a norwegian population with refractory marginal periodontitis. Antimicrob. Agents Chemother. 47: 1443-1446. https://doi.org/10.1128/AAC.47.4.1443-1446.2003
  12. Lu Y, Liu J, Jin L. 2009. Passive immunization of crayfish (Procambius clarkiaii) with chicken egg yolk. Appl. Biochem. Biotechnol. 159: 750-758. https://doi.org/10.1007/s12010-009-8555-6
  13. Otake S, Nishihara Y, Makimura M, Hatta H, Kim M, Yamamoto T, et al. 1991. Protection of rats against dental caries by passive immunization with hen-egg-yolk antibody (IgY). J. Dent. Res. 70: 162-166. https://doi.org/10.1177/00220345910700030101
  14. Hatta H, Tsuda K, Ozeki M, Kim M, Yamamoto T, Otake S, et al. 1997. Passive immunization against dental plaque formation in humans: effect of a mouth rinse containing egg yolk antibodies (IgY) specific to Streptococcus mutans. Caries Res. 31: 268-274. https://doi.org/10.1159/000262410
  15. Hamajima S, Maruyama M, Hijiya T, Hatta H, Abiko Y. 2007. Egg yolk-derived immunoglobulin (IgY) against Porphyromonas gingivalis 40-kDa outer membrane protein inhibits coaggregation activity. Arch. Oral Biol. 52: 697-704. https://doi.org/10.1016/j.archoralbio.2006.12.013
  16. Li X, Liu H, Xu Y, Xu F, Wang L, You J, et al. 2012. Chicken egg yolk antibody (IgY) controls Solobacterium moorei under in vitro and in vivo conditions. Appl. Biochem. Biotechnol. 168: 1448-1458. https://doi.org/10.1007/s12010-012-9869-3
  17. Xu FX, Xu YP, Jin LJ, Liu H, Wang LH, You JS, et al. 2012. Effectiveness of egg yolk immunoglobulin (IgY) against periodontal. J. Appl. Microbiol. 113: 983-991. https://doi.org/10.1111/j.1365-2672.2012.05396.x
  18. Wong L, Sissons C. 2001. A comparison of human dental plaque microcosm biofilms grown in an undefined medium and a chemically defined artificial saliva. Arch. Oral Biol. 46: 477-486. https://doi.org/10.1016/S0003-9969(01)00016-4
  19. He Z, Huang Z, Zhou W, Tang Z, Ma R, Liang J. 2016. Anti-biofilm activities from resveratrol against Fusobacterium nucleatum. Front. Microbiol. 7: 1065. https://doi.org/10.3389/fmicb.2016.01065
  20. Furne J, Majerus G, Lenton P, Springfield J, Levitt DG, Levitt MD. 2002. Comparison of volatile sulfur compound concentrations measured with a sulfide detector vs. gas chromatography. J. Dent. Res. 81: 140-143. https://doi.org/10.1177/0810140
  21. Greenman J, El-Maaytah M, Duffield J, Spencer P, Rosenberg M, Corry D, et al. 2005. Assessing the relationship between concentrations of malodor compounds and odor scores from judges. J. Am. Dent. Assoc. 136: 749-757. https://doi.org/10.14219/jada.archive.2005.0258
  22. Lee EN, Sunwoo HH, Menninen K, Sim JS. 2002. In vitro studies of chicken egg yolk antibody (IgY) against Salmonella enteritidis and Salmonella typhimurium. Poult. Sci. 81: 623-641.
  23. Chen X, Yang B, Qi C, Sun TW, Chen F, Wu J, et al. 2016. DNA-templated microwave-hydrothermal synthesis of nanostructured hydroxyapatite for storing and sustained release of an antibacterial protein. Dalton Trans. 45: 1648-1656. https://doi.org/10.1039/C5DT03357H
  24. Cho E, Park SN, Lim YK, Shin Y, Paek J, Hwang CH, et al. 2015. Fusobacterium hwasookii sp. nov., isolated from a human periodontitis lesion. Curr. Microbiol. 70: 169-175. https://doi.org/10.1007/s00284-014-0692-7
  25. Tonzetich J. 1971. Direct gas chromatographic analysis of sulphur compounds in mouth air in man. Arch. Oral. Biol. 16: 587-597. https://doi.org/10.1016/0003-9969(71)90062-8
  26. Yoshimura M, Nakano Y, Fukamachi H, Koga T. 2002. 3-Chloro-DL-alanine resistance by L-methionine-alpha-deamino-gamma-mercaptomethane-lyase activity. FEBS Lett. 523: 119-122. https://doi.org/10.1016/S0014-5793(02)02958-7
  27. Suzuki N, Nakano Y, Watanabe T, Yoneda M, Hirofuji T, Hanioka T. 2018. Two mechanisms of oral malodor inhibition by zinc ions. J. Appl. Oral Sci. 26: e20170161. https://doi.org/10.1590/1678-7757-2017-0161
  28. Yoshida Y, Ito S, Kamo M, Kezuka Y, Tamura H, Kunimatsu K, et al. 2010. Production of hydrogen sulfide by two enzymes associated with biosynthesis of homocysteine and lanthionine in Fusobacterium nucleatum subsp. nucleatum ATCC 25586. Microbiology 156 (Pt 7): 2260-2269. https://doi.org/10.1099/mic.0.039180-0
  29. Liu J, Ling JQ, Wu CD. 2013. Cetylpyridinium chloride suppresses gene expression associated with halitosis. Arch. Oral Biol. 58: 1686-1691. https://doi.org/10.1016/j.archoralbio.2013.08.014
  30. Amann A, Costello Bde L, Miekisch W, Schubert J, Buszewski B, Pleil J, et al. 2014. The human volatilome: volatile organic compounds (VOCs) in exhaled breath, skin emanations, urine, feces and saliva. J. Breath. Res. 8: 034001. https://doi.org/10.1088/1752-7155/8/3/034001
  31. Oz HS, Puleo DA. Animal models for periodontal disease. 2011. J. Biomed. Biotechnol. 2011: 754857.
  32. Oliveira GJ, Paula LG, Souza JA, Spin-Neto R, Stavropoulos A, Marcantonio RA. 2017. Effects of avocado/soybean unsaponifiables (ASU) on the treatment of ligature-induced periodontitis in rats. Braz. Oral Res. 31: 1-11.
  33. Yokoyama K, Sugano N, Shimada T, Shofiqur RA, Ibrahim el-SM, Isoda R, et al. 2007. Effects of egg yolk antibody against Porphyromonas gingivalis gingipains in periodontitis patients. J. Oral Sci. 49: 201-206. https://doi.org/10.2334/josnusd.49.201
  34. Iwasaki Y, Otsuka H, Yanagisawa N, Hisamitsu H, Manabe A, Nonaka N, et al. 2011. In situ proliferation and differentiation of macrophages in dental pulp. Cell Tissue Res. 346: 99-109. https://doi.org/10.1007/s00441-011-1231-5
  35. Mosser DM, Edwards JP. 2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 10: 958-969. https://doi.org/10.1038/nri2448
  36. Grenier D, Mayrand D. 1985. Cytotoxic effects of culture supernatants of oral. bacteria and various organic. Can. J. Microbiol. 31: 302-304. https://doi.org/10.1139/m85-057
  37. Tsuda H, Ochiai K, Suzuki N, Otsuka K. 2010. Butyrate, a bacterial metabolite, induces. apoptosis and autophagic cell death in gingival epithelial cells. J. Periodontal Res. 45: 626-634. https://doi.org/10.1111/j.1600-0765.2010.01277.x
  38. Kirschbaum M, Schultze-Mosgau S, Pfister W, Eick S. 2010. Mixture of periodontopathogenic bacteria influences interaction with KB cells. Anaerobe 16: 461-468. https://doi.org/10.1016/j.anaerobe.2010.03.009
  39. Roberts GL. 2000. Fusobacterial infections: an underestimated threat. Br. J. Biomed. Sci. 57: 156-162.

Cited by

  1. The Role of Oral Microbiota in Intra-Oral Halitosis vol.9, pp.8, 2019, https://doi.org/10.3390/jcm9082484