DOI QR코드

DOI QR Code

Fermentative Bio-Hydrogen Production of Food Waste in the Presence of Different Concentrations of Salt (Na+) and Nitrogen

  • Lee, Pul-eip (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Hwang, Yuhoon (Department of Environmental Engineering, Seoul National University of Science and Technology) ;
  • Lee, Tae-jin (Department of Environmental Engineering, Seoul National University of Science and Technology)
  • 투고 : 2018.08.16
  • 심사 : 2018.11.30
  • 발행 : 2019.02.28

초록

Fermentation of food waste in the presence of different concentrations of salt ($Na^+$) and ammonia was conducted to investigate the interrelation of $Na^+$ and ammonia content in bio-hydrogen production. Analysis of the experimental results showed that peak hydrogen production differed according to the ammonia and $Na^+$ concentration. The peak hydrogen production levels achieved were (97.60, 91.94, and 49.31) ml/g COD at (291.41, 768.75, and 1,037.89) mg-N/L of ammonia and (600, 1,000, and 4,000) $mg-Na^+/L$ of salt concentration, respectively. At peak hydrogen production, the ammonia concentration increased along with increasing salt concentration in the medium. This means that for peak hydrogen production, the C/N ratio decreased with increasing salt content in the medium. The butyrate/acetate (B/A) ratio was higher in proportion to the bio-hydrogen production (r-square: 0.71, p-value: 0.0006). Different concentrations of $Na^+$ and ammonia in the medium also produced diverse microbial communities. Klebsiella sp., Enterobacter sp., and Clostridium sp. were predominant with high bio-hydrogen production, while Lactococcus sp. was found with low bio-hydrogen production.

키워드

참고문헌

  1. Khanal SK, Chen WH, Chen LL, Sung S. 2004. Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energy 29: 1123-1131. https://doi.org/10.1016/j.ijhydene.2003.11.002
  2. Huang M, Ouyang L, Wang H, Liu J, Zhu M. 2015. Hydrogen generation by hydrolysis of MgH2 and enhanced kinetics performance of ammonium chloride introducing. Int. J. Hydrogen Energy 40: 6145-6150. https://doi.org/10.1016/j.ijhydene.2015.03.058
  3. Chen W, Ouyang LZ, Liu JW, Yao XD, Wang H, Liu ZW, et al. 2017. Hydrolysis and regeneration of sodium borohydride ($NaBH_4$) - a combination of hydrogen production and storage. J. Power Sources 359: 400-407. https://doi.org/10.1016/j.jpowsour.2017.05.075
  4. Ma M, Duan R, Ouyang L, Zhu X, Peng C, Zhu M. 2017. Hydrogen generation via hydrolysis of $H-CaMg_2$ and $H-CaMg_{1.9}Ni_{0.1}$. Int. J. Hydrogen Energy 42: 22312-22317. https://doi.org/10.1016/j.ijhydene.2017.05.159
  5. Kapdan IK, Kargi F. 2006. Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38: 569-582. https://doi.org/10.1016/j.enzmictec.2005.09.015
  6. Adamson KA. 2004. Hydrogen from renewable resources-the hundred year commitment. Energ. Policy 32: 1231-1242. https://doi.org/10.1016/S0301-4215(03)00094-6
  7. Kotay SM, Das D. 2008. Biohydrogen as a renewable energy resource-prospects and potentials. Int. J. Hydrogen Energy 33: 258-263. https://doi.org/10.1016/j.ijhydene.2007.07.031
  8. Nath K, Das D. 2004. Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 65: 520-529. https://doi.org/10.1007/s00253-004-1644-0
  9. Das D, Veziro lu TN. 2001. Hydrogen production by biological processes: a survey of literature. Int. J. Hydrogen Energy 26: 13-28. https://doi.org/10.1016/S0360-3199(00)00058-6
  10. Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL. 2007. Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int. J. Hydrogen Energy 32: 172-184. https://doi.org/10.1016/j.ijhydene.2006.08.014
  11. Oh YK, Seol EH, Lee EY, Park SH. 2002. Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int. J. Hydrogen Energy 27: 1373-1379. https://doi.org/10.1016/S0360-3199(02)00100-3
  12. Liu X, Zhu Y, Yang ST. 2006. Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme Microb. Technol. 38: 521-528. https://doi.org/10.1016/j.enzmictec.2005.07.008
  13. Campoy RA, Guelfo LAF, Fallego CJA, Garcia LIR. 2017. Inhibition of the hydrolytic phase in the production of biohydrogen by dark fermentation of organic solid waste. Energy Fuels 31: 7176-7184 https://doi.org/10.1021/acs.energyfuels.7b00847
  14. Sivagurunathan P, Kumar G, Bakonyi P, Kim SH, Kobayashi T, Xu KQ, et al. 2016. A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. Int. J. Hydrogen Energy 41: 3820-3836. https://doi.org/10.1016/j.ijhydene.2015.12.081
  15. Xiaolong H, Minghua Z, Hanqing Y, Qinqin S, Lecheng L. 2006. Effect of sodium ion concentration on hydrogen production from sucrose by anaerobic hydrogen-producing granular sludge. Chinese J. Chem. Eng. 14: 511-517. https://doi.org/10.1016/S1004-9541(06)60106-7
  16. Sprott GD, Shaw KM, Jarrell KF. 1984. Ammonia/potassium exchange in methanogenic bacteria. J. Biol. Chem. 259: 12602-12608. https://doi.org/10.1016/S0021-9258(18)90789-1
  17. Lee MJ, Kim TH, Min BK, Hwang SJ. 2012. Sodium ($Na^+$) concentration effects on metabolic pathway and estimation of ATP use in dark fermentation hydrogen production through stoichiometric analysis. J. Environ. Manage 108: 22-26. https://doi.org/10.1016/j.jenvman.2012.04.027
  18. Jin B, Wang S, Xing L, Li B, Peng Y. 2016. The effect of salinity on waste activated sludge alkaline fermentation and kinetic analysis. J. Environ. Sci. 43: 80-90. https://doi.org/10.1016/j.jes.2015.10.011
  19. Kim DH, Kim SH, Shin HS. 2009. Sodium inhibition of fermentative hydrogen production. Int. J. Hydrogen Energy 34: 3295-3304. https://doi.org/10.1016/j.ijhydene.2009.02.051
  20. Salerno MB, Park WS, Zuo Y, Logan BE. 2006. Inhibition of biohydrogen production by ammonia. Water Res. 40: 1167-1172. https://doi.org/10.1016/j.watres.2006.01.024
  21. Wang B, Wan W, Wang J. 2009. Effect of ammonia concentration on fermentative hydrogen production by mixed cultures. Bioresour. Technol. 100: 1211-1213. https://doi.org/10.1016/j.biortech.2008.08.018
  22. Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee JK, et al. 2015. Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour. Technol. 182: 383-388 https://doi.org/10.1016/j.biortech.2015.01.138
  23. Kadam PC, Boone DR. 1996. Influence of pH on ammonia accumulation and toxicity in halophilic, methylotrophic methanogens. Appl. Environ. Microbiol. 62: 4486-4492. https://doi.org/10.1128/AEM.62.12.4486-4492.1996
  24. Wu JH, Lin CY. 2004. Biohydrogen production by mesophilic fermentation of food wastewater. Water Sci. Technol. 49: 223-228.
  25. Lin CY, Lay CH. 2004. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int. J. Hydrogen Energy 29: 41-45. https://doi.org/10.1016/S0360-3199(03)00083-1
  26. Kang JH, Kim D, Lee TJ. 2012. Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment. Bioresour. Technol. 109: 239-243. https://doi.org/10.1016/j.biortech.2012.01.048
  27. Jun YS, Yu SH, Ryu KG, Lee TJ. 2008. Kinetic study of pH effects on biological hydrogen production by a mixed culture. J. Microbiol. Biotechnol. 18: 1130-1135.
  28. Arnold EG, Lenore SC, Andrew DE. 1992. pp. 56-59. American Public Health Association. Standard methods for the examination of water and wastewater, 18th Ed. American Public Health Assoc. Washington, DC, USA.
  29. Michel DB, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  30. Markwell MAK, Haas SM, Bieber LL, Tolbert NE. 1978. A modification of the lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87: 206-210. https://doi.org/10.1016/0003-2697(78)90586-9
  31. Muyzer G, Waal EC, Uitterlinden AG. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700. https://doi.org/10.1128/AEM.59.3.695-700.1993
  32. Pedro MS, Haruta S, Hazaka M, Shimada R, Yoshida C, Hiura K, et al. 2001. Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter. J. Biosci. Bioeng. 91: 159-165. https://doi.org/10.1016/S1389-1723(01)80059-1
  33. Baek JS, Choi EH, Yun YS, Kim SC, Kim MS. 2006. Comparison of hydrogenases from Clostridium butyricum and Thiocapsa roseopersicina: hydrogenases of C. butyricum and T. roseopersicina. J. Microbiol. Biotechnol. 16: 1210-1215.
  34. Cao X, Zhao Y. 2009. The influence of sodium on biohydrogen production from food waste by anaerobic fermentation. J. Mater. Cycles Waste Manage. 11: 244-250. https://doi.org/10.1007/s10163-009-0237-5
  35. Thakur V, Jadhav SK, Tiwari KL. 2014. Optimization of different parameters for biohydrogen production by Klebsiella oxytoca ATCC 13182. Trends Appl. Sci. Res. 9: 229-237. https://doi.org/10.3923/tasr.2014.229.237
  36. Xu J, Marc MA. 2015. Fermentation of swine wastewater-derived duckweed for biohydrogen production. Int. J. Hydrogen Energy 40: 7028-7036. https://doi.org/10.1016/j.ijhydene.2015.03.166
  37. Yenigün O, Demirel B. 2013. Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48: 901-911. https://doi.org/10.1016/j.procbio.2013.04.012
  38. Kayhanian M. 1999. Ammonia inhibition in high-solids biogasification: an overview and practical solutions. Environ. Technol. 20: 355-365. https://doi.org/10.1080/09593332008616828
  39. Hartel U, Buckel W. 1996. Sodium ion-dependent hydrogen production in Acidaminococcus fermentans. Arch. Microbiol. 166: 350-356. https://doi.org/10.1007/s002030050394
  40. Bruggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, et al. 2003. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc. Natl. Acad. Sci. USA 100: 1316-1321. https://doi.org/10.1073/pnas.0335853100
  41. Boiangiu CD, Jayamani E, Brügel D, Herrmann G, Kim J, Forzi L, et al. 2005. Sodium ion pumps and hydrogen production in glutamate fermenting anaerobic bacteria. J. Mol. Microbiol. Biotechnol. 10: 105-119. https://doi.org/10.1159/000091558
  42. Show KY, Zhang ZP, Tay JH, Liang DT, Lee DJ, Jiang WJ. 2007. Production of hydrogen in a granular sludge-based anaerobic continuous stirred tank reactor. Int. J. Hydrogen Energy 32: 4744-4753. https://doi.org/10.1016/j.ijhydene.2007.07.005
  43. Kim SH, Han SK, Shin HS. 2006. Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem. 41: 199-207. https://doi.org/10.1016/j.procbio.2005.06.013
  44. Zhang T, Fang HHP. 2000. Digitization of DGGE (denaturing gradient gel electrophoresis) profile and cluster analysis of microbial communities. Biotechnol. Lett. 22: 399-405. https://doi.org/10.1023/A:1005680803442
  45. Bomar M, Hippe H, Schink B. 1991. Lithotrophic growth and hydrogen metabolism by clostridium magnum. FEMS Microbiol. Lett. 83: 347-350. https://doi.org/10.1111/j.1574-6968.1991.tb04488.x
  46. Wang X, Hoefel D, Saint CP, Monis PT, Jin B. 2007. The isolation and microbial community analysis of hydrogen producing bacteria from activated sludge. J. Appl. Microbiol. 103: 1415-1423. https://doi.org/10.1111/j.1365-2672.2007.03370.x
  47. Chang JJ, Chen WE, Shih SY, Yu SJ, Lay JJ, Wen FS, et al. 2006. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR. Appl. Microbiol. Biotechnol. 70: 598-604. https://doi.org/10.1007/s00253-005-0106-7
  48. Hung CH, Cheng CH, Cheng LH, Liang CM, Lin CY. 2008. Application of clostridium-specific PCR primers on the analysis of dark fermentation hydrogen-producing bacterial community. Int. J. Hydrogen Energy 33: 1586-1592. https://doi.org/10.1016/j.ijhydene.2007.09.037
  49. Minnan L, Jinli H, Xiaobin W, Huijuan X, Jinzao C, Chuannan L, et al. 2005. Isolation and characterization of a high H2-producing strain klebsiella oxytoca HP1 from a hot spring. Res. Microbiol. 156: 76-81. https://doi.org/10.1016/j.resmic.2004.08.004
  50. Sivagurunathan P, Kumar G, Park JH, Park JH, Park HD, Yoon JJ, et al. 2016. Feasibility of enriched mixed cultures obtained by repeated batch transfer in continuous hydrogen fermentation. Int. J. Hydrogen Energy 41: 4393-4403. https://doi.org/10.1016/j.ijhydene.2015.06.133
  51. Chen X, Sun Y, Xiu Z, Li X, Zhang D. 2006. Stoichiometric analysis of biological hydrogen production by fermentative bacteria. Int. J. Hydrogen Energy 31: 539-549. https://doi.org/10.1016/j.ijhydene.2005.03.013
  52. Hitit ZY, Lazaro CZ. Hallenbeck PC. 2017. Hydrogen production by co-cultures of Clostridium butyricum and Rhodospeudomonas palustris: optimization of yield using response surface methodology. Int. J. Hydrogen Energy 42: 6578-6589. https://doi.org/10.1016/j.ijhydene.2016.12.122
  53. Long C, Cui J, Liu Z, Liu Y, Long M, Hu Z. 2010. Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1. Int. J. Hydrogen Energy 35: 6657-6664. https://doi.org/10.1016/j.ijhydene.2010.04.094
  54. Maru BT, Lopez F, Kengen SWM, Constanti M, Medina F. 2016. Dark fermentative hydrogen and ethanol production from biodiesel waste glycerol using a co-culture of Escherichia coli and Enterobacter sp. Fuel 186: 375-384. https://doi.org/10.1016/j.fuel.2016.08.043
  55. Yin Y, Wang J. 2016. Characterization and hydrogen production performance of a novel strain Enterococcus faecium INET2 isolated from gamma irradiated sludge. Int. J. Hydrogen Energy 41: 22793-22801. https://doi.org/10.1016/j.ijhydene.2016.10.059
  56. Song L, Dong X. 2009. Hydrogenoanaerobacterium saccharovorans gen. nov., sp. nov., isolated from H2-producing UASB granules. Int. J. Syst. Evol. Microbiol. 59: 295-299. https://doi.org/10.1099/ijs.0.000349-0
  57. Noike T, Takabatake H, Mizuno O, Ohba M. 2002. Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int. J. Hydrogen Energy 27: 1367-1371. https://doi.org/10.1016/S0360-3199(02)00120-9

피인용 문헌

  1. Bioconversion of 5-Hydroxymethylfurfural (HMF) to 2,5-Furandicarboxylic Acid (FDCA) by a Native Obligate Aerobic Bacterium, Acinetobacter calcoaceticus NL14 vol.192, pp.2, 2020, https://doi.org/10.1007/s12010-020-03325-7