Fig. 1. System Structure
Fig. 2. AHP Structure of Input Module
Fig. 3. Entry Forms of User Preference
Fig. 4. [Program Capture] User Interface of Input Module
Fig. 5. [Program Capture] User Interface of Recommendation Module
Fig. 6. Investigation of User Preference based on Pairwise Comparison
Fig. 7. 5-fold Cross Validation According to the Changing Number of Users
Table 1. Development Environment
Table 2. Classification of Preference based on Triangular Fuzzy Numbers
References
- I. Lim. (2015). Recommendation System Using R. Seoul : Chaosbook.
- S. K. Gorakala. (2017). Building Recommendation Engines. Seoul : Acorn
- J. W. Ha, H. Y. Kim & S. W. Kim. (2016). Data Imputation Methods for Effective Collaborative Filtering. Communications of KIISE, 34(6), 8-15.
- J. T. Oh & S. Y. Lee. (2018). Design of a Recommendation System using Fuzzy Association Rules and Fuzzy-AHP. Proceedings of KAICS Spring Conference 2018, 19(1), 387-389.
- G. W. Jin. (2018). A Study on Alignment Correction Algorithm for Detecting Specific Areas of Video Images. Journal of the Korea Convergence Society, 9(11), 9-14. https://doi.org/10.15207/JKCS.2018.9.11.009
- S. Y. Kim & Y. J. Jung. (2017). Machine Learning for the first time. Seoul : Hanbit Media.
- S. Rendle, Z. Gantner, C. Freudenthaler & L. Schmidt-Thieme. (2011). Fast Context-aware Recommendations with Factorization Machines. Proceeding SIGIR '11 Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, 635-644.
- M. Unger, A. Bar, B. Shapira & L. Rokach. (2016). Towards Latent Context-aware Recommendation Systems. Knowledge-Based Systems, 104, 165-178. https://doi.org/10.1016/j.knosys.2016.04.020
- J. H. Seo. (2018). Performance Evaluation of One Class Classification to detect anomalies of NIDS. Journal of the Korea Convergence Society, 9(11), 15-21. https://doi.org/10.15207/JKCS.2018.9.11.015
- E. B. Choi. (2018). A Virtualization Management Convergence Access Control Model for Cloud Computing Environments. Journal of Convergence for Information Technology, 8(5), 69-75. https://doi.org/10.14801/JAITC.2018.8.2.69
- H. J. Yoon. (2018). Classification of Normal and Abnormal Heart Sounds Using Neural Network. Journal of Convergence for Information Technology, 8(5), 131-135. https://doi.org/10.22156/CS4SMB.2018.8.5.131
- J. T. Oh & S. Y. Lee. (2017). A Movie Recommendation System based on Fuzzy-AHP with User Preference and Partition Algorithm. Journal of Digital Convergence, 15(11), 425-432. https://doi.org/10.14400/JDC.2017.15.11.425
- I. A. Jeon & U. Kang. (2014). Large Scale Tensor - Mining Algorithms and Applications -. Communications of the Korean Institute of Information Scientists and Engineers, 32(7), 33-39.
- Hacker Noon. (2018). Definition of Tensor. https://hackernoon.com/learning-ai-if-you-suck-at-math-p4-tensors-illustrated-with-cats-27f0002c9b32.
- J. Han, M. Kamber & J. Pei. (2015). Data Mining: Concepts and Techniques. UiWang : Acorn.
- W. S. Lee. (2015). Analysis of Association Rules and Frequent Item Sets. Seoul : Chaosbook.
- G. Shmueli, P. C. Bruce & N. R. Patel. (2017). Data Mining for Business Analytics, 3rd Edition Concepts, Techniques, and Applications. Seoul : E&B Plus.
- J. Leskovec, A. Rajaraman & J. D. Ullman. (2017). Mining of Massive Datasets 2nd Edition. Seoul : Acorn.
- J. Bell. (2016). Machine Learning. Seoul : Gilbut.
- R Friend. (2016). R, Python Analysis and Programming. http://rfriend.tistory.com/191?category=706118.
- S. K. Reddy, V. Swaminathan & C. M. Motley. (1998). Exploring the Determinants of Broadway Show Success. Journal of Marketing Research, 35(3), 296-315. https://doi.org/10.1177/002224379803500302
- Naver Corp. (2018). Naver Movie. https://movie.naver.com/movie/sdb/rank/rmovie.nhn
- S. H. Lee. (2014). ASP 4.5.1 Web Programming. Gapyeong : Allthat Media.
- H. S. Joun & S. Y. Lee. (2015). Technical Entrepreneurship Education Service Quality Evaluation System based on FAHP. Journal of Digital Convergence, 13(10), 509-516. https://doi.org/10.14400/JDC.2015.13.10.509