DOI QR코드

DOI QR Code

유체 주입을 동반한 절리 암반의 수리-역학 특성 평가에 대한 고찰

A Technical Review of Hydromechanical Properties of Jointed Rock Mass accompanied by Fluid Injection

  • 김형목 (세종대학교 에너지자원공학과) ;
  • ;
  • ;
  • 박의섭 (한국지질자원연구원)
  • 투고 : 2019.02.12
  • 심사 : 2019.02.21
  • 발행 : 2019.02.28

초록

최근의 이산화탄소 심지층 처분, 인공지열저류층 형성 및 발전, 원유회수증진 사업 등에는 고압의 유체를 주입하는 과정이 수반되고 이들 사업의 안전하고 성공적인 수행을 위해서는 대상 부지 절리 암반의 투수 특성 및 주입압에 의한 역학적 변형에 기인한 변화를 정확하게 평가하는 것이 중요하다. 본 고에서는 절리 암반 수리-역학 특성 파악을 위한 해석적 및 실험적 평가 방법에 대해 검토하였다. 먼저 유체 주입 전 절리 암반 초기 투과 특성 및 수리-역학 특성 평가에 고려해야 할 기술요소를 분석하고 현장 시추공 실험을 통해 이들 수리-역학 특성을 직접 측정하기 위한 최근의 SIMFIP 실험장치의 특징 및 활용방안에 대해서도 검토하였다.

Permeability and its change due to a fluid injection in jointed rock mass is an important factor to be well identified for a safe and successful implementation of Carbon Capture and Sequestration (CCS), Enhanced Geothermal System (EGS) and Enhanced Oil Recovery (EOR) projects which may accompany injection-induced hydromechanical deformation of the rock mass. In this technical report, we first reviewed important issues in evaluating initial permeability using borehole hydraulic tests and numierical approaches for understanding coupled hydromechanical properties of rock mass. Recent SIMFIP testing device to measure these hydromechanical properties directly through in-situ borehole experiments was also reviewed. The technical significance and usefulness of the device for further applications was discussed as well.

키워드

OBGHBQ_2019_v29n1_12_f0001.png 이미지

Fig. 1. Transmissivities for selecting a type of hydraulic tests

OBGHBQ_2019_v29n1_12_f0002.png 이미지

Fig. 2. The effect of hydromechaical characteristics due to injection on fluid pressure build-up

OBGHBQ_2019_v29n1_12_f0003.png 이미지

Fig. 3. Comparison of two different approaches to define a stress-permeability relation in jointed rock mass (Rutqvist, 2015)

OBGHBQ_2019_v29n1_12_f0004.png 이미지

Fig. 4. Components and setup of SIMFIP devices (Gugliemli et al., 2014) (a) Schematic installation of the devices (b) Downhole probe

OBGHBQ_2019_v29n1_12_f0005.png 이미지

Fig. 5. Deformation measurement unit in the downhole probe(Gugliemli et al., 2014)

OBGHBQ_2019_v29n1_12_f0006.png 이미지

Fig. 6. Installation of SIMFIP device at the side wall of underground research cavern(http://sanfordlab.org/experiment/sigma-v)

OBGHBQ_2019_v29n1_12_f0007.png 이미지

Fig. 7. Theoretical pressure evolution and joint deformation during SIMFIP test (Gugliemli et al., 2014)

OBGHBQ_2019_v29n1_12_f0008.png 이미지

Fig. 8. Graphical interpretation of SIMFIP test results(Gugliemli et al., 2014)

OBGHBQ_2019_v29n1_12_f0009.png 이미지

Fig. 9. Field conditions for the SIMFIP test at the Tournemire URL site (Guglielmi et al., 2015)

OBGHBQ_2019_v29n1_12_f0010.png 이미지

Fig. 10. The results of SIMFIP test at the Tournemire URL site (top: pressure and flow rate with regard to time, bottom: displacement at hanging wall of the fault, Guglielmi et al., 2015)

OBGHBQ_2019_v29n1_12_f0011.png 이미지

Fig. 11. Three dimensional plots of measured displacement of SIMFIP test at the Tournemire URL site (Guglielmi et al., 2015)

OBGHBQ_2019_v29n1_12_f0012.png 이미지

Fig. 12. Model geometry and boundary conditions for the numerical simulation of SIMFIP test (Guglielmi et al., 2015)

OBGHBQ_2019_v29n1_12_f0013.png 이미지

Fig. 13. Results of both measured and calculated by numerical simulations of SIMFIP test at the Tournemire URL site (Guglielmi et al., 2015)

OBGHBQ_2019_v29n1_12_f0014.png 이미지

Fig. 14. The results of numerical simulations of SIMFIP test at the Tournemire URL site (Guglielmi et al., 2015)

OBGHBQ_2019_v29n1_12_f0015.png 이미지

Fig. 15. Stereographical representation of incremental joint displacement measured from SIMFIP test

Table 1. The estimated hydromechanical properties of the joint (Modified from Guglielmi et al., 2015)

OBGHBQ_2019_v29n1_12_t0001.png 이미지

참고문헌

  1. Barton N (2007) Thermal over-closure of joints and rock masses and implications for HLW repositories. Proc. of 11th ISRM congress, Lisbon (2007): 109-116.
  2. Cappa F, Guglielmi Y, Fenart P, Merrien-Soukatchoff V, Thoraval A (2005) Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements. Int J Rock Mech Min Sci 42:287-306. https://doi.org/10.1016/j.ijrmms.2004.11.006
  3. Cappa F, Guglielmi Y, Rutqvist J, Tsang C-F, Thoraval A (2008) Estimation of fracture flow parameters through numerical analysis of hydromechanical pulses. Water Resour Res 44(W11408):1-15.
  4. Cooper, HH., Bredehoeft, JD and Papadopulos, SS (1967) Response of a finite-diameter well to an instantaneous charge of water, Water Resources Research 3(1):263-269. https://doi.org/10.1029/WR003i001p00263
  5. Guglielmi Y, Cappa F, Rutqvist J, Tsang C-F, Thoraval A (2008) Mesoscale characterization of coupled hydromechanical behavior of a fractured-porous slope in response to free water-surface movement. Int J Rock Mech Min Sci 42:852-878.
  6. Guglielmi Y, Cappa F, Lancon H, Janowczyk JB, Rutqvist J, Tsang CF, Wang JSY (2014) ISRM Suggested Method for Step-Rate Injection Method for Fracture In-Situ Properties (SIMFIP): Using a 3-Components Borehole Deformation Sensor. Rock Mechanics and Rock Engineering 47:303-311. https://doi.org/10.1007/s00603-013-0517-1
  7. Guglielmi, Y. Elsworth, D. Cappa, F, Henry, P., Gout, C., Dick, P., and Durand, J (2015) In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB012158.
  8. Horne RN, (1995) Modern well test analysis: A computer-aided approach, 2nd Ed., Petroway Inc., Palo Alto, CA p.257.
  9. Jaeger JC, Cook NGW, Zimmerman R. 2007, Fundamentals of rock mechanics, 4th edn. Blackwell, Oxford, p 475
  10. Jeanne, P., Guglielmi, Y., Rutqvist, J., Nussbaum, C., & Birkholzer, J. (2018). Permeability variations associated with fault reactivation in a claystone formation investigated by field experiments and numerical simulations. Journal of Geophysical Research: Solid Earth, 123, 1694.1710. https://doi.org/10.1002/2017JB015149
  11. Kim, HM, Park ES, Synn JH, Park YC (2008) Greenhouse Gas ($CO_2$) Geological Sequestration and Geomechanical Technology Component, Tunnel & Underground Space Vol. 18(3), pp.175-184.
  12. Kim, HM, Bae, WS (2013) Enhanced Oil Recovery (EOR) Technology Coupled with Underground Carbon Dioxide Sequestration, Tunnel & Underground Space Vol. 23(1), pp.1-12. https://doi.org/10.7474/TUS.2013.23.1.001
  13. Kim HM, Synn JH, Ando K (2007) Review of hydaulic properties of jointed rock mass from borehole tests, 2007 KSRM Conference, March 2007: 221-222.
  14. Kim HM, Lettry Y. Ryu DH, Song WK (2014) Mock-up experiments on permeability measurement of concrete and construction joints for air tightness assessment, Materials and Strucutres 47:127-149. https://doi.org/10.1617/s11527-013-0050-4
  15. Min KB, Song Y, Yoon WS (2013) EGS Power Generation and Hydraulic Stimulation, Tunnel & Underground Space Vol. 23(6), pp.506-520. https://doi.org/10.7474/TUS.2013.23.6.506
  16. Min KB, Rutqvist J, Elsworth D (2009) Chemically and mechanically mediated influences on the transport and mechanical characteristics of rock fractures. International Journal of Rock Mechanics and Mining Sciences 46: 80-89. https://doi.org/10.1016/j.ijrmms.2008.04.002
  17. Morris A, Ferrill DA, Henderson DB (1996) Slip-tendency analysis and fault reactivation. Geology 24(3):275-278. https://doi.org/10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2
  18. Oldenburg, CM. et al. (2017) Hydraulic Fracturing Experiments at 1500 m Depth in a Deep Mine: Highlights from the kISMET Project, PROCEEDINGS, 42nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 13-15, 2017 SGP-TR-212.
  19. Park, JW, Park, ES, Kim, T, Lee, C, Lee, J (2018a) Hydro-mechanical modelling of fault slip induced by water injection: DECOVALEX-2019 Task B (Step 1), Tunnels & Underground Space 28(5): 400-425.
  20. Park, JW, Kim, T, Park, ES, Lee, C (2018b) Coupled hydro-mechanical modelling of fault reactivation induced by water injection: DECOVALEX-2019 Task B (Benchmark Model Test), Tunnels & Underground Space 28(6): 670-691.
  21. Quinn P, John A, Cherry JA, Parker BL (2011) Hydraulic testing using a versatile straddle packer system for improved transmissivity estimation in fractured-rock boreholes. Hydrogeology journal 20: 1529-1547. https://doi.org/10.1007/s10040-012-0893-8
  22. Rutqvist J (2015) Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings. Geofluids 15: 48-66. https://doi.org/10.1111/gfl.12089
  23. Rutqvist J, Tsang CF (2002) A study of caprock hydromechanical changes associated with CO2-injeciton into a brine formation. Environmental Geology 42: 296-305. https://doi.org/10.1007/s00254-001-0499-2
  24. Rutqvist J, Birkholzer J, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management 48(6): 1798-1807. https://doi.org/10.1016/j.enconman.2007.01.021
  25. Rutqvist J, Tsang CF, Stephansson O (1998) Determination of fracture storativity in hard rocks using high pressure testing. Water Resour Res 34: 2551-2560. https://doi.org/10.1029/98WR01863
  26. Schweisinger T, Swenson EJ, Murdoch LC (2009) Introduction to hydromechanical well tests in fractured rock aquifers. Groundwater 47(1): 69-79. https://doi.org/10.1111/j.1745-6584.2008.00501.x
  27. Synn, JH, Park, C (2018) Hydromechanical dynamics of hydraulic and natural fractures, J. Korean Soc. Miner. Energy Resour. Eng. 55(4): 340-353. https://doi.org/10.32390/ksmer.2018.55.4.340
  28. Vasco DW (2009) Modeling broad-band poroelastic propagation using an asymptotic approach. PDF from scholarship.org. Geophys J Int Wiley Online Libr 179(1): 299-318. https://doi.org/10.1111/j.1365-246X.2009.04263.x
  29. Vasco DW, Minkoff SE (2009) Modelling flow in a pressure sensitive, heterogeneous medium. Geophys J Int 179: 972-989. https://doi.org/10.1111/j.1365-246X.2009.04330.x
  30. Witherspoon PF, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6): 1016-1024. https://doi.org/10.1029/WR016i006p01016
  31. Yasuhara HD, Elsworth D, Polak A (2004) Evolution of permeability in a natural fracture: significant role of pressure solution. Journal of Geophysical Research 109: B3204. https://doi.org/10.1029/2003JB002663
  32. Yasuhara H, Kinoshita N, Ohfuji H, Lee DS, Nakashima S, Kishida K (2011) Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical model. Applied Geochemistry 26: 2074-88. https://doi.org/10.1016/j.apgeochem.2011.07.005