DOI QR코드

DOI QR Code

A Novel Reference Model for Cloud Manufacturing CPS Platform Based on oneM2M Standard

제조 클라우드 CPS를 위한 oneM2M 기반의 플랫폼 참조 모델

  • 윤성진 (한국기술교육대학교 컴퓨터공학과) ;
  • 김한진 (한국기술교육대학교 컴퓨터공학과) ;
  • 신현엽 (한국기술교육대학교 컴퓨터공학과) ;
  • 진회승 (소프트웨어 정책연구소) ;
  • 김원태 (한국기술교육대학교 컴퓨터공학부)
  • Received : 2019.01.09
  • Accepted : 2019.01.19
  • Published : 2019.02.28

Abstract

Cloud manufacturing is a new concept of manufacturing process that works like a single factory with connected multiple factories. The cloud manufacturing system is a kind of large-scale CPS that produces products through the collaboration of distributed manufacturing facilities based on technologies such as cloud computing, IoT, and virtualization. It utilizes diverse and distributed facilities based on centralized information systems, which allows flexible composition user-centric and service-oriented large-scale systems. However, the cloud manufacturing system is composed of a large number of highly heterogeneous subsystems. It has difficulties in interconnection, data exchange, information processing, and system verification for system construction. In this paper, we derive the user requirements of various aspects of the cloud manufacturing system, such as functional, human, trustworthiness, timing, data and composition, based on the CPS Framework, which is the analysis methodology for CPS. Next, by analyzing the user requirements we define the system requirements including scalability, composability, interactivity, dependability, timing, interoperability and intelligence. We map the defined CPS system requirements to the requirements of oneM2M, which is the platform standard for IoT, so that the support of the system requirements at the level of the IoT platform is verified through Mobius, which is the implementation of oneM2M standard. Analyzing the verification result, finally, we propose a large-scale cloud manufacturing platform based on oneM2M that can meet the cloud manufacturing requirements to support the overall features of the Cloud Manufacturing CPS with dependability.

제조 클라우드는 여러 공장이 연결되어 단일 공장처럼 구성되어 사용자의 요구사항에 유연하게 대처할 수 있는 새로운 제조 패러다임이다. 이러한 기능을 제공하는 제조 클라우드 시스템은 클라우드 컴퓨팅, 사물인터넷, 인공지능과 같은 컴퓨팅 기술을 활용하여 분산되어 있는 제조 시설 간의 협업을 통한 유연 생산에서 안정성, 고신뢰성, 연동성 등을 제공하는 일종의 대규모 CPS이다. 제조 클라우드 CPS는 많은 수와 다양한 종류의 이기종 서브시스템들로 구성되어 있는데 이 때문에 서브시스템 간 연동, 데이터 교환, 시스템 통합 등에 문제가 발생할 수 있어 대규모의 제조 클라우드 CPS을 구성하는데 어려움을 겪고 있다. 본 논문에서는 이러한 어려움을 극복하기 위하여 제조 클라우드를 체계적으로 분석하고 분석 결과를 바탕으로 제조 클라우드 CPS를 효과적으로 지원할 수 있는 플랫폼 참조 모델을 제안한다. CPS 분석 방법론인 CPS 프레임워크를 활용하여 제조 클라우드 CPS의 기능적, 인간적, 신뢰성, 시간적, 데이터 및 구성의 측면에서 사용자 요구사항을 도출하고 이들을 분석하여 확장성, 구성성, 상호 작용성, 신뢰성, 시간성, 상호 운용성, 지능성의 영역에서 시스템 요구사항을 정의한다. 정의된 제조 클라우드 CPS 시스템 요구사항을 바탕으로 플랫폼을 구성하기 위하여 IoT 플랫폼 표준인 oneM2M의 요구사항에 매핑하고 oneM2M 구현물인 Mobius를 통하여 요구사항 지원성 검증 실험을 수행하였다. 수행 결과를 분석하여 현재 사물인터넷 플랫폼의 제조 클라우드 CPS 지원성을 확인하고 이를 확장하여 대규모 제조 클라우드 생산을 지원하는 플랫폼 참조 모델을 제안한다.

Keywords

JBCRIN_2019_v8n2_41_f0001.png 이미지

Fig. 1. A Manufacturing Service of the CMfg CPS

JBCRIN_2019_v8n2_41_f0002.png 이미지

Fig. 2. Overview of CPS Framework

JBCRIN_2019_v8n2_41_f0003.png 이미지

Fig. 3. Concern List of Each Aspect in CPS Framework

JBCRIN_2019_v8n2_41_f0004.png 이미지

Fig. 4. Relationship of the Cmfg Cps User Requirements and System Requirements

JBCRIN_2019_v8n2_41_f0005.png 이미지

Fig. 5. Relationship of the CMfg CPS and oneM2M Requirements

JBCRIN_2019_v8n2_41_f0006.png 이미지

Fig. 6. System Configuration of CMfg Testbed

JBCRIN_2019_v8n2_41_f0007.png 이미지

Fig. 7. Network Configuration of CMfg Testbed

JBCRIN_2019_v8n2_41_f0008.png 이미지

Fig. 8. Operation structure of the Test Case Applications

JBCRIN_2019_v8n2_41_f0009.png 이미지

Fig. 9. Test Sequence Diagram of Each Test Case

JBCRIN_2019_v8n2_41_f0010.png 이미지

Fig. 10. A Reference Model for the CMfg CPS Platform

Table 1. Feature Comparison of IoT Platforms

JBCRIN_2019_v8n2_41_t0001.png 이미지

Table 2. Representative User Requirements of the CMfg CPS

JBCRIN_2019_v8n2_41_t0002.png 이미지

Table 3 System requirements of the CMfg CPS

JBCRIN_2019_v8n2_41_t0003.png 이미지

Table 4. Experimental Results

JBCRIN_2019_v8n2_41_t0004.png 이미지

References

  1. Edward A. Lee, "Cyber-physical systems-are computing foundations adequate," Position Paper for NSF Workshop On Cyber-Physical Systems: Research Motivation, Techniques and Roadmap. Vol.2, pp.1-9, 2006.
  2. Radhakisan Baheti, and Helen Gill, "Cyber-physical systems," The Impact of Control Technology, Vol.12, pp.161-166, 2011.
  3. Edward Ashford Lee and Sanjit A. Seshia, "Introduction to embedded systems: A cyber-physical systems approach," Cambridge, Massachuetts: MIT Press, 2016.
  4. Jay Lee, Behrad Bagheri, and Hung-An Kao, "A cyber-physical systems architecture for industry 4.0-based manufacturing systems," Manufacturing Letters, Vol. 3, pp.18-23, 2015. https://doi.org/10.1016/j.mfglet.2014.12.001
  5. Lin Zhang, Yongliang Luo, Fei Tao, Bo Hu Li, Lei Ren, Xuesong Zhang, Hua Guo, Ying Cheng, Anrui Hu, and Yongkui Liu, "Cloud manufacturing: a new manufacturing paradigm," Enterprise Information Systems, Vol.8, Issue 2, pp.167-187, 2014. https://doi.org/10.1080/17517575.2012.683812
  6. Lei Ren, Lin Zhang, Lihui Wang, Fei Tao, and Xudong Chai, "Cloud manufacturing: key characteristics and applications," International Journal of Computer Integrated Manufacturing, Vol.30, Issue 6, pp.501-515, 2017. https://doi.org/10.1080/0951192X.2014.902105
  7. F. Tao, Y. Cheng, L. Zhang, and A. Y. C. Nee, "Advanced manufacturing systems: socialization characteristics and trends," Journal of Intelligent Manufacturing, Vol.28, Issue. 5, pp.1079-1094, 2017. https://doi.org/10.1007/s10845-015-1042-8
  8. Chunyang Yu, Xun Xu, and Yuqian Lu, "Computer-integrated manufacturing, cyber-physical systems and cloud manufacturing-concepts and relationships," Manufacturing letters, Vol.6, pp.5-9, 2015. https://doi.org/10.1016/j.mfglet.2015.11.005
  9. Fei Tao, Ying Cheng, Li Da Xu, Lin Zhang, and Bo Hu Li, "CCIoT-CMfg: cloud computing and internet of things-based cloud manufacturing service system," IEEE Transactions on Industrial Informatics, Vol.10, Issue 2, pp.1435-1442, 2014. https://doi.org/10.1109/TII.2014.2306383
  10. Fei Tao, Jiangfeng Cheng, Qinglin Qi, Meng Zhang, He Zhang, and Fangyuan Sui, "Digital twin-driven product design, manufacturing and service with big data," The International Journal of Advanced Manufacturing Technology, Vol.94, Issue 9-12, pp.3563-3576, 2018. https://doi.org/10.1007/s00170-017-0233-1
  11. C. Renzi, F. Leali, M. Cavazzuti, and A. O. Andrisano, "A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems," The International Journal of Advanced Manufacturing Technology, Vol.72, Issue 1-4, pp. 403-418, 2014. https://doi.org/10.1007/s00170-014-5674-1
  12. Jim Davis, Thomas Edgar, James Porter, John Bernaden, and Michael Sarli, "Smart manufacturing, manufacturing intelligence and demand-dynamic performance," Computers & Chemical Engineering, Vol.47, pp.145-156, 2012. https://doi.org/10.1016/j.compchemeng.2012.06.037
  13. Ivan Stojmenovic, "Machine-to-machine communications with in-network data aggregation, processing, and actuation for large-scale cyber-physical systems," IEEE Internet of Things Journal, Vol.1, Issue 2, pp.122-128, 2014. https://doi.org/10.1109/JIOT.2014.2311693
  14. Garcia, J. A. and J. J. Rodriguez. "Open CPS platforms," in Proceedings of the CPS 20 Years from Now--2nd Experts Workshop Cyphers, pp.22-26, 2014.
  15. Karsten Schweichhart, "Reference Architectural Model Industrie 4.0 (RAMI 4.0) an introduction," Publikationen der Plattform Industrie, Vol.4, 2016.
  16. The Cyber-Physical Systems Public Working Group(CPS PWG), "Framework for Cyber-Physical System Release 1.0," NIST, 2016.
  17. Jaeseok Yun, Il-Yeop Ahn, Nak-Myung Sung, and Jaeho Kim, "A Device Software Platform for Consumer Electronics Based on the Internet of Things," IEEE Trans. Consumer Electron, Vol.61, Issue 4, pp.564-571, 2015. https://doi.org/10.1109/TCE.2015.7389813
  18. Stefan-Helmut Leitner and Wolfgang Mahnke, "OPC UA-service-oriented architecture for industrial applications," ABB Corporate Research Center, pp.1-6, 2006.
  19. Jorg Swetina, Guang Lu, Philip Jacobs, Francois Ennesser, and Jaeseung Song, "Toward a standardized common M2M service layer platform: Introduction to oneM2M," IEEE Wireless Communications, Vol.21, Issue 3, pp.20-26, 2014. https://doi.org/10.1109/MWC.2014.6845045
  20. Open Connectivity Foundation(OCF), "OCF 1.3 Core Specification," OCF, 2018.
  21. Biqing Huang, Chenghai Li, Chao Yin, and Xinpie Zhao, "Cloud manufacturing service platform for small-and medium-sized enterprises," The International Journal of Advanced Manufacturing Technology, Vol.65, Issue 9-12, pp.1261-1272, 2013. https://doi.org/10.1007/s00170-012-4255-4
  22. Fei Tao, Ying Zuo, Li Da Xu, and Lin Zhang, "IoT-based intelligent perception and access of manufacturing resource toward cloud manufacturing," IEEE Transactions on Industrial Informatics, Vol.10, Issue 2, pp.1547-1557, 2014. https://doi.org/10.1109/TII.2014.2306397
  23. Jihong Liu and Bo Li, "An ontology-based architecture for service-orientated design knowledge fusion in Group Corporation Cloud Manufacturing," Computer Supported Cooperative Work in Design(CSCWD), 2012 IEEE 16th International Conference on, Wuhan, China, May, pp.811-816, 2012.
  24. TTA, "An ICT Integrated Smart Factory Reference Model," TTA standard, 2015.
  25. Agnieszka Radziwon, Arne Bilberg, Marcel Bogers, and Erik SkovMadsen, "The smart factory: exploring adaptive and flexible manufacturing solutions," Procedia Engineering, Vol.69, pp.1184-1190, 2014. https://doi.org/10.1016/j.proeng.2014.03.108
  26. Hyoung Seok Kang, Ju Yeon Lee, SangSu Choi, Hyun Kim, Jun Hee Park, Ji Yeon Son, Bo Hyun Kim, and Sang Do Noh, "Smart manufacturing: Past research, present findings, and future directions," International Journal of Precision Engineering and Manufacturing-Green Technology, Vol.3, Issue 1, pp.111-128, 2016. https://doi.org/10.1007/s40684-016-0015-5
  27. Christopher Prinz, Friedrich Morlock, Sebastian Freith, Niklas Kreggenfeld, Dieter Kreimeier, and Bernd Kuhlenkotter, "Learning Factory modules for smart factories in Industrie 4.0.," Procedia CIRP, Vol.54, pp.113-118, 2016. https://doi.org/10.1016/j.procir.2016.05.105
  28. Amy J. C. Trappey, Charles V. Trappey, Usharani Hareesh Govindarajan, John J. Sun, and Allen C. Chuang, "A review of technology standards and patent portfolios for enabling cyber-physical systems in advanced manufacturing," IEEE Access, Vol.4, pp.7356-7382, 2016. https://doi.org/10.1109/ACCESS.2016.2619360
  29. Kazi Masudul Alam and Abdulmotaleb El Saddik. "C2ps: A digital twin architecture reference model for the cloud-based cyber-physical systems," IEEE Access, Vol.5, pp.2050-2062, 2017. https://doi.org/10.1109/ACCESS.2017.2657006
  30. Edward A. Lee, "Cyber physical systems: Design challenges," Object oriented real-time distributed computing (isorc), 2008 11th ieee international symposium on, Orlando, FL, USA, pp.363-369, May, 2008.
  31. Stephan Weyer, Torben Meyer, Moritz Ohmer, Dominic Gorecky, and Detlef Zuhlke, "Future Modeling and Simulation of CPS-based Factories: an Example from the Automotive Industry," IFAC-PapersOnLine, Vol.49, Issue 31, pp.97-102, 2016. https://doi.org/10.1016/j.ifacol.2016.12.168
  32. Ragunathan Rajkumar, Insup Lee, Lui Sha, and John Stankovic, "Cyber-physical systems: the next computing revolution," in Proceedings of the 47th design automation conference, Anaheim, California, pp.731-736, Jun. 2010.
  33. oneM2M, "Draft Release 4 Technical Specifications TS-0002 Requirements," 2018.
  34. Nick McKeown, "Software-defined networking," INFOCOM Keynote Talk, Vol.17, Issue 2, pp.30-32, 2009.
  35. R. L. S. de Oilveira, A. A. Shinoda, C. M. Schweitzer, and L. R. Prete, "Using Mininet for emulation and prototyping Software-Defined Networks," in Proceedings of the IEEE Colombian Conference on Communications and Computing (COLCOM), Bogota, Colombia, pp.1-6, Jun. 2014.
  36. Nayak, Naresh Ganesh, Frank Durr, and Kurt Rothermel. "Time-sensitive software-defined network (TSSDN) for real-time applications," in Proceedings of the 24th International Conference on Real-Time Networks and Systems, Brest, France, pp.193-202, Oct. 2016.
  37. Kentis, Angelos Mimidis, Michael Stubert Berger, and Jose Soler, "Effects of Port Congestion in the Gate Control List Scheduling of Time Sensitive Networks," International Conference on the Network of the Future, London, UK, pp.138-140, Nov. 2017.
  38. Jan Medved, Robert Varga, Anton Tkacik, and Ken Gray, "Opendaylight: Towards a model-driven sdn controller architecture," World of Wireless, Mobile and Multimedia Networks(WoWMoM), 2014 IEEE 15th International Symposium on a, Sydney, Australia, Jun. 2014.
  39. Y. E. Okian, S. G. Lee, H. J. Lee, and J. H. Lam, "Distributed SDN controller system: a survey on design choice," Computer Networks, Vol.121, pp.100-111, 2017. https://doi.org/10.1016/j.comnet.2017.04.038
  40. Eidson, John and Kang Lee, "IEEE 1588 standard for a precision clock synchronization protocol for networked measurement and control systems," Sensors for Industry Conference, 2nd ISA/IEEE, 2002.
  41. Virginie Galtier, Stephane Vialle, Cherifa Dad, Jean-Philippe Tavella, Jean-Philippe Lam-Yee-Mui, and Gilles Plessis "FMI-based distributed multi-simulation with DACCOSIM," in Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Symposium. Society for Computer Simulation International, 2015.
  42. Microsoft Azure [Internet], http://www.microsoft.com/azure.
  43. Roland Rosen, Georg von Wichert, George Lo and Kurt D.Bettenhausen, "About the importance of autonomy and digital twins for the future of manufacturing," IFACPapersOnLine, Vol.48, Issue 3, pp.567-572, 2015.
  44. Henry D. Morris, Simon Ellis, Jill Feblowitz, Kimberly Knickle, and Marcus Torchia, "A software platform for operational technology innovation," International Data Corporation, pp.1-17, 2014.
  45. Pentenrieder, Katharina, et al., "Augmented Reality-based factory planning-an application tailored to industrial needs," Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on, Nara, Japan, pp.1-9, Jun. 2007.
  46. Pardo-Castellote, Gerardo, "Omg data-distribution service: Architectural overview," Distributed Computing Systems Workshops, Proceedings. 23rd International Conference on. IEEE, 2003.
  47. Jia, Feng, et al., "Deep neural networks: A promising tool for fault characteristic mining and intelligent diagnosis of rotating machinery with massive data," Mechanical Systems and Signal Processing, Vol.72, pp.303-315, 2016. https://doi.org/10.1016/j.ymssp.2015.10.025
  48. Antonio Barbalace, et al. "Performance comparison of VxWorks, Linux, RTAI, and Xenomai in a hard real-time application," IEEE Transactions on Nuclear Science, Vol.55, No.1, pp.435-439, 2008. https://doi.org/10.1109/TNS.2007.905231