Fig. 1. An IMI-heap with Two Component Heaps
Fig. 2. Initialization of IMI-heap
Fig. 3. Heapify Algorithm of Right-end
Fig. 4. Insertion Algorithm
Fig. 5. IMI-heap after inserting key 25 into Fig. 1
Fig. 6. Remove Algorithm of Minimum Key
Fig. 7. IMI-heap after Deleting Minimum Key from Fig. 5
References
- E. Horowitz, S. Sahni, and D. Mehta, "Fundamentals of Data Structures in C++," San Francisco: W. H. Freeman, 1995.
- S. Carlsson, J. Munro, and P. Poblete, "An implicit binomial queue with constant insertion time," in Proceedings of the 1st Scandinavian Workshop on Algorithm Theory, Lecture Notes in Computer Science, Vol.318, pp.1-13, Jul. 1988.
- N. Harvey and K. Zatloukal, "The Post-order heap," in Proceedings of the Third International Conference on Fun with Algorithms(FUN), May 2004.
- H. Jung, "A Simple Array Version of M-heap," International Journal of Foundations of Computer Science, Vol.25, No.1, pp.67-88, Jun. 2014. https://doi.org/10.1142/S012905411450004X
- H. Jung, "The d-deap*: A fast and simple cache-aligned d-ary deap," Information Processing Letters, Vol.93, No.2, pp. 63-67, Jan. 2005. https://doi.org/10.1016/j.ipl.2004.10.001
- J. van Leeuwen and D. Wood, "Interval heaps," The Computer Journal, Vol.36, No.3, pp.209-216, 1993. https://doi.org/10.1093/comjnl/36.3.209
- Y. Ding and M. Weiss, "On the Complexity of Building an Interval Heap," Information Processing Letters, Vol.50, pp.143-144, 1994. https://doi.org/10.1016/0020-0190(94)00020-4
- S. Sahni, Data Structures, Algorithms, & Applications in Java: Double-Ended Priority Queues [Internet], https://www.cise.ufl.edu/-sahni/dsaaj/enrich/c13/double.htm.
- S. Bansal, S. Sreekanth, and P. Gupta, "M-heap: A Modified heap data structures," International Journal of Foundations of Computer Science, Vol.14, No.3, pp.491-502, 2003. https://doi.org/10.1142/S0129054103001856
- H. Jung, "A double-ended priority queue with O(1) insertion amortized time," KIPS Journal A, Vol.16, No.A(3), pp. 217-222, Jun. 2009.