DOI QR코드

DOI QR Code

Estrogenic Activity of Sanguiin H-6 through Activation of Estrogen Receptor α Coactivator-binding Site

  • Trinh, Tuy An (College of Korean Medicine, Gachon University) ;
  • Park, Eun-Ji (Department of Obstetrics and Gynaecology, College of Korean Medicine, Daejeon University) ;
  • Lee, Dahae (School of Pharmacy, Sungkyunkwan University) ;
  • Song, Ji Hoon (Department of Medicine, University of Ulsan College of Medicine) ;
  • Lee, Hye Lim (Department of Pediatrics, College of Korean Medicine, Daejeon University) ;
  • Kim, Ki Hyun (School of Pharmacy, Sungkyunkwan University) ;
  • Kim, Younghoon (Pharminogene Inc.) ;
  • Jung, Kiwon (Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University) ;
  • Kang, Ki Sung (College of Korean Medicine, Gachon University) ;
  • Yoo, Jeong-Eun (Department of Obstetrics and Gynaecology, College of Korean Medicine, Daejeon University)
  • 투고 : 2018.04.30
  • 심사 : 2018.10.03
  • 발행 : 2019.03.31

초록

A popular approach for the study of estrogen receptor ${\alpha}$ inhibition is to investigate the protein-protein interaction between the estrogen receptor (ER) and the coactivator surface. In our study, we investigated phytochemicals from Rubus coreanus that were able to disrupt $ER{\alpha}$ and coactivator interaction with an $ER{\alpha}$ antagonist. The E-screen assay and molecular docking analysis were performed to evaluate the effects of the estrogenic activity of R. coreanus extract and its constituents on the MCF-7 human breast cancer cell line. At $100{\mu}g/mL$, R. coreanus extract significantly stimulated cell proliferation ($574.57{\pm}8.56%$). Sanguiin H6, which was isolated from R. coreanus, demonstrated the strongest affinity for the $ER{\alpha}$ coactivator-binding site in molecular docking analysis, with a binding energy of -250.149. The initial results of the study indicated that sanguiin H6 contributed to the estrogenic activity of R. coreanus through the activation of the $ER{\alpha}$ coactivator-binding site.

키워드

참고문헌

  1. Oh, C. M.; Won, Y. J.; Jung, K. W.; Kong, H. J.; Cho, H.; Lee, J. K.; Lee, D. H.; Lee, K. H. Cancer Res. Treat. 2016, 48, 436-450. https://doi.org/10.4143/crt.2016.089
  2. Jung, K. W.; Won, Y. J.; Oh, C. M.; Kong, H. J.; Lee, D. H.; Lee, K. H. Cancer Res. Treat. 2017, 49, 306-312. https://doi.org/10.4143/crt.2017.130
  3. Carmichael, A. R.; Mokbel, K. Arch. Plast. Surg. 2016, 43, 222-223. https://doi.org/10.5999/aps.2016.43.2.222
  4. Irelli, A.; Cocciolone, V.; Cannita, K.; Zugaro, L.; Di Staso, M.; Lanfiuti Baldi, P. L.; Paradisi, S.; Sidoni, T.; Ricevuto, E.; Ficorella, C. Bone 2016, 87, 169-175. https://doi.org/10.1016/j.bone.2016.04.006
  5. de Pedro, M.; Baeza, S.; Escudero, M. T.; Dierssen-Sotos, T.; Gomez-Acebo, I.; Pollan, M.; Llorca, J. Breast Cancer Res. Treat. 2015, 149, 525-536. https://doi.org/10.1007/s10549-015-3267-9
  6. Esteva, F. J.; Hortobagyi, G. N. Sci. Am. 2008, 298, 58-65. https://doi.org/10.1038/scientificamerican0608-58
  7. Jameera Begam, A.; Jubie, S.; Nanjan, M. J. Bioorg. Chem. 2017, 71, 257-274. https://doi.org/10.1016/j.bioorg.2017.02.011
  8. Howell, S. J.; Johnston, S. R. D.; Howell, A. Best Pract. Res. Clin. Endocrinol. Metab. 2004, 18, 47-66. https://doi.org/10.1016/j.beem.2003.08.002
  9. Zheng, J.; Zhou, Y.; Li, Y.; Xu, D. P.; Li, S.; Li, H. B. Nutrients. 2016, 8, 495. https://doi.org/10.3390/nu8080495
  10. Lee, J.; Dossett, M.; Finn, C. E. Molecules. 2014, 19, 10524-10533. https://doi.org/10.3390/molecules190710524
  11. Heo, J. Donguibogam; Yeogang: Korea, 1994, pp 946-947.
  12. Li, J.; Du, L. F.; He, Y.; Yang, L.; Li, Y. Y.; Wang, Y. F.; Chai, X.; Zhu, Y.; Gao, X. M. Chem. Biodivers. 2015, 12, 1809-1847. https://doi.org/10.1002/cbdv.201400307
  13. Ju, H. K.; Cho, E. J.; Jang, M. H.; Lee, Y. Y.; Hong, S. S.; Park, J. H.; Kwon, S. W. J. Pharm. Biomed. Anal. 2009, 49, 820-827. https://doi.org/10.1016/j.jpba.2008.12.024
  14. Choung, M. G.; Lim, J. D. Korean J. Med. Crop Sci. 2012, 20, 259-269. https://doi.org/10.7783/KJMCS.2012.20.4.259
  15. Korner, W.; Hanf, V.; Schuller, W.; Kempter, C.; Metzqer, J.; Haqenmaier, H. Sci. Total Environ. 1999, 225, 33-48. https://doi.org/10.1016/S0048-9697(98)00330-1
  16. Soto, A. M.; Sonnenschein, C.; Chung, K. L.; Fernandez, M. F.; Olea, N.; Serrano, F. O. Environ. Health Perspect. 1995, 103, 113-122.
  17. Lee, S.; Barron, M. G. PloS One 2017, 12, 1-14.
  18. Ng, H. W.; Zhang, W.; Shu, M.; Luo, H., Ge, W.; Perkins, R.; Tong, W.; Hong, H. BMC Bioinformatics. 2014, 15, 1-15. https://doi.org/10.1186/1471-2105-15-1
  19. Pang, X.; Fu, W.; Wang, J.; Kang, D.; Xu, L.; Zhao, Y.; Liu, A. L.; Du, G. H. Oxid. Med. Cell. Longev. 2018, 2018, 1-11.
  20. Jordan, V. C. J. Med. Chem. 2003, 46, 883-908. https://doi.org/10.1021/jm020449y
  21. McDonnell, D. P.; Chang, C. Y.; Norris, J. D. J. Steroid Biochem. Mol. Biol. 2000, 74, 327-335. https://doi.org/10.1016/S0960-0760(00)00109-6
  22. Sun, A.; Moore, T. W.; Gunther, J. R.; Kim, M. S.; Rhoden, E.; Du, Y.; Fu, H.; Snyder, J. P.; Katzenellenbogen, J. A. Chem. Med. Chem. 2011, 6, 654-666. https://doi.org/10.1002/cmdc.201000507
  23. Park, E. J.; Lee, D.; Baek, S. E.; Kim, K. H.; Kang, K. S.; Jang, T. S.; Lee, H. L.; Song, J. H.; Yoo, J. E. Bioorg. Med. Chem. Lett. 2017, 27, 4389-4392. https://doi.org/10.1016/j.bmcl.2017.08.019
  24. Park, E. H.; Park, J. Y.; Yoo, H. S.; Yoo, J. E.; Lee, H. L. Bioorg. Med. Chem. Lett. 2016, 26, 3291-3294. https://doi.org/10.1016/j.bmcl.2016.05.050
  25. Choi, M. H.; Shim, S. M.; Kim, G. H. J. Food Sci. Technol. 2016, 53, 1214-1221. https://doi.org/10.1007/s13197-015-2094-7
  26. Ko, H.; Jeon, H.; Lee, D.; Choi, H. K.; Kang, K. S.; Choi K. C. Bioorg. Med. Chem. Lett. 2015, 25, 5508-5513. https://doi.org/10.1016/j.bmcl.2015.10.067
  27. Helferich, W. G.; Andrade, J. E.; Hoagland, M. S. Inflammopharmacology 2008, 16, 219-226. https://doi.org/10.1007/s10787-008-8020-0
  28. Hsieh, C. Y.; Santell, R. C.; Haslam, S. Z.; Helferich, W. G. Cancer Res. 1998, 58, 3833-3838.
  29. Lee, J. Y.; Kim, H. S.; Song, Y. S. J. Tradit. Complement. Med. 2012, 2, 96-104. https://doi.org/10.1016/S2225-4110(16)30082-7

피인용 문헌

  1. Identification and Isolation of Active Compounds from Astragalus membranaceus that Improve Insulin Secretion by Regulating Pancreatic β-Cell Metabolism vol.9, pp.10, 2019, https://doi.org/10.3390/biom9100618
  2. Benzyl salicylate from the stems and stem barks of Cornus walteri as a nephroprotective agent against cisplatin-induced apoptotic cell death in LLC-PK1 cells vol.10, pp.10, 2019, https://doi.org/10.1039/c9ra07009e
  3. Analysis and Identification of Active Compounds from Salviae miltiorrhizae Radix Toxic to HCT-116 Human Colon Cancer Cells vol.10, pp.4, 2019, https://doi.org/10.3390/app10041304
  4. Aviculin Isolated from Lespedeza cuneata Induce Apoptosis in Breast Cancer Cells through Mitochondria-Mediated Caspase Activation Pathway vol.25, pp.7, 2019, https://doi.org/10.3390/molecules25071708
  5. The Effects of Triterpenoid Saponins from the Seeds of Momordica cochinchinensis on Adipocyte Differentiation and Mature Adipocyte Inflammation vol.9, pp.8, 2019, https://doi.org/10.3390/plants9080984
  6. Calvatianone, a Sterol Possessing a 6/5/6/5-Fused Ring System with a Contracted Tetrahydrofuran B-Ring, from the Fruiting Bodies of Calvatia nipponica vol.83, pp.9, 2019, https://doi.org/10.1021/acs.jnatprod.0c00673
  7. Potential Anti-Skin Aging Effect of (-)-Catechin Isolated from the Root Bark of Ulmus davidiana var. japonica in Tumor Necrosis Factor-α-Stimulated Normal Human Dermal Fibroblasts vol.9, pp.10, 2019, https://doi.org/10.3390/antiox9100981
  8. Neuroprotective Effect of Tricyclic Pyridine Alkaloids from Fusarium lateritium SSF2, against Glutamate-Induced Oxidative Stress and Apoptosis in the HT22 Hippocampal Neuronal Cell Line vol.9, pp.11, 2019, https://doi.org/10.3390/antiox9111115
  9. Diketoacetonylphenalenone, Derived from Hawaiian Volcanic Soil-Associated Fungus Penicillium herquei FT729, Regulates T Cell Activation via Nuclear Factor-κB and Mitogen-Activated Protein Kina vol.25, pp.22, 2019, https://doi.org/10.3390/molecules25225374
  10. Hepatoprotective Potency of Chrysophanol 8- O -Glucoside from Rheum palmatum L. against Hepatic Fibrosis via Regulation of the STAT3 Signaling Pathway vol.21, pp.23, 2019, https://doi.org/10.3390/ijms21239044
  11. Ent -Peniciherqueinone Suppresses Acetaldehyde-Induced Cytotoxicity and Oxidative Stress by Inducing ALDH and Suppressing MAPK Signaling vol.12, pp.12, 2019, https://doi.org/10.3390/pharmaceutics12121229
  12. Anti-Adipogenic Polyacetylene Glycosides from the Florets of Safflower (Carthamus tinctorius) vol.9, pp.1, 2019, https://doi.org/10.3390/biomedicines9010091
  13. Antioxidant and Anti-Inflammatory Effects of White Mulberry (Morus alba L.) Fruits on Lipopolysaccharide-Stimulated RAW 264.7 Macrophages vol.26, pp.4, 2019, https://doi.org/10.3390/molecules26040920
  14. Metabolite Profile of Cucurbitane-Type Triterpenoids of Bitter Melon (Fruit of Momordica charantia) and Their Inhibitory Activity against Protein Tyrosine Phosphatases Relevant to Insulin Resistance vol.69, pp.6, 2019, https://doi.org/10.1021/acs.jafc.0c06085
  15. Phloridzin Acts as an Inhibitor of Protein-Tyrosine Phosphatase MEG2 Relevant to Insulin Resistance vol.26, pp.6, 2019, https://doi.org/10.3390/molecules26061612
  16. Estrogenic Effects of Extracts and Isolated Compounds from Belowground and Aerial Parts of Spartina anglica vol.19, pp.4, 2019, https://doi.org/10.3390/md19040210
  17. Identification of Bioactive Natural Product from the Stems and Stem Barks of Cornus walteri: Benzyl Salicylate Shows Potential Anti-Inflammatory Activity in Lipopolysaccharide-Stimulated RAW 264.7 Mac vol.13, pp.4, 2019, https://doi.org/10.3390/pharmaceutics13040443
  18. Antidiabetic Flavonoids from Fruits of Morus alba Promoting Insulin-Stimulated Glucose Uptake via Akt and AMP-Activated Protein Kinase Activation in 3T3-L1 Adipocytes vol.13, pp.4, 2021, https://doi.org/10.3390/pharmaceutics13040526
  19. Ginkwanghols A and B, osteogenic coumaric acid-aliphatic alcohol hybrids from the leaves of Ginkgo biloba vol.44, pp.5, 2019, https://doi.org/10.1007/s12272-021-01329-3
  20. Phytochemical Analysis of the Fruits of Sea Buckthorn (Hippophae rhamnoides): Identification of Organic Acid Derivatives vol.10, pp.5, 2019, https://doi.org/10.3390/plants10050860
  21. Comparative Evaluation of Apoptosis Induction Using Needles, Bark, and Pollen Extracts and Essential Oils of Pinus eldarica in Lung Cancer Cells vol.11, pp.13, 2021, https://doi.org/10.3390/app11135763
  22. Schisandrol A Exhibits Estrogenic Activity via Estrogen Receptor α-Dependent Signaling Pathway in Estrogen Receptor-Positive Breast Cancer Cells vol.13, pp.7, 2019, https://doi.org/10.3390/pharmaceutics13071082
  23. Identification of bioactive compounds from mulberry enhancing glucose-stimulated insulin secretion vol.43, 2019, https://doi.org/10.1016/j.bmcl.2021.128096
  24. Withasomniferol D, a New Anti-Adipogenic Withanolide from the Roots of Ashwagandha (Withania somnifera) vol.14, pp.10, 2019, https://doi.org/10.3390/ph14101017
  25. Phytochemical Investigation of Bioactive Compounds from White Kidney Beans (Fruits of Phaseolus multiflorus var. Albus): Identification of Denatonium with Osteogenesis-Inducing Effect vol.10, pp.10, 2019, https://doi.org/10.3390/plants10102205
  26. Phytochemical Constituents Identified from the Aerial Parts of Lespedeza cuneata and Their Effects on Lipid Metabolism during Adipocyte Maturation vol.8, pp.11, 2021, https://doi.org/10.3390/separations8110203
  27. Sanguiins-Promising Molecules with Broad Biological Potential vol.22, pp.23, 2019, https://doi.org/10.3390/ijms222312972