DOI QR코드

DOI QR Code

Investigation of the Molecular Diagnostic Market in Animals

동물 분자 진단 시장의 동향

  • Park, Chang-Eun (Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University) ;
  • Park, Sung-Ha (IVD R&D Group, IVD Business Team, Health and Medical Equipment Division, Samsung Electronics Co., Ltd.)
  • 박창은 (남서울대학교 임상병리학과.분자진단연구소) ;
  • 박성하 (삼성전자 의료기기사업부 IVD사업팀 개발그룹)
  • Received : 2019.02.03
  • Accepted : 2019.02.14
  • Published : 2019.03.31

Abstract

Recently, the rapid growth of the companion animal market has led to the development of animal disease diagnosis kits. Therefore, the utility of the introduction of biomarkers for the development of animal molecular diagnostics is being reevaluated. A good biomarker should be precise and reliable, distinguish between normal and diseased states, and differentiate between different diseases. Recently reported genetic markers, tumor markers (cell free DNA, circulating tumor cells, granzyme, and skin tumors), and others (brucellosis, programmed death recovery-1, symmetric dimethylarginine, periostin, and cysteinyl leukotrien) have been developed. The biomarkers are used for risk prediction or for the screening, diagnosis, and monitoring of disease progression. The most important criteria for related biomarkers are disease specificity. Many potential biomarkers have emerged from laboratory and test studies, but they have not been validated in independent or large-scale clinical studies. Candidate biomarkers evaluate disease associations, verify the effectiveness of biomarkers for early detection and disease progression, and incorporate them into humans and animals. In the future, it will be necessary to reevaluate the utility of well-structured biomarker-based research and study the development of kits that can be used in on-site tests in accordance with the trends introduced in the diagnosis of animal diseases.

최근 반려동물 시장의 급격한 성장으로 인해 동물용 질병 진단키트의 개발이 이루어지고 있다. 이에 동물 분자진단 개발을 위한 바이오마커의 도입으로 효용성을 재평가하고 있다. 좋은 바이오 마커는 정확하고 신뢰할 수 있어야 하고, 정상 상태와 질병 상태를 구별하고, 다른 질병을 구별해야 한다. 최근 보고된 유전마커나 세포유리 DNA, 순환종양세포, granzyme, 피부종양에 관한 종양마커의 개발이 활발히 이루어지고 있으며, 기타로는 브루셀라증, programmed death receptor-1, symmetric dimethylarginine, periostin, cysteinyl leukotrien이 활발히 도입되고 있다. 따라서 바이오마커는 위험 예측에 사용되거나 질병 진행의 스크리닝, 진단 및 모니터링에 사용된다. 관련 바이오 마커에 대한 가장 중요한 기준은 질병 특이성이며 많은 잠재적 바이오 마커가 실험실 및 시험 연구에서 출현했지만, 독립적인 실험이나 대규모 임상 연구에서 검증이 부족하다. 후보 바이오 마커는 질병과 연관성을 평가하고, 조기 발견, 질병 진행에 대한 바이오 마커의 유효성을 검증하여서 인간 및 동물에게 접목하게 된다. 향후 잘 구조화 된 바이오마커 기반 연구의 효용성을 재평가하고 동물 질병 진단에 도입되는 추세에 맞춰 현장검사에서 활용될 수 있는 키트의 개발에 대한 연구가 요구돼야 할 것으로 사료된다.

Keywords

References

  1. Boudreau CE. An update on cerebrovascular disease in dogs and cats. Vet Clin North Am Small Anim Pract. 2018;48:45-62. https://doi.org/10.1016/j.cvsm.2017.08.009.
  2. Hokamp JA, Nabity MB. Renal biomarkers in domestic species. Vet Clin Pathol. 2016;45:28-56. https://doi.org/10.1111/vcp.12333.
  3. Xenoulis PG. Diagnosis of pancreatitis in dogs and cats. J Small Anim Pract. 2015;56:13-26. https://doi.org/10.1111/jsap.12274.
  4. Shah R, Jones E, Vidart V, Kuppen PJ, Conti JA, Francis NK. Biomarkers for early detection of colorectal cancer and polyps: systematic review. Cancer Epidemiol Biomarkers Prev. 2014;23:1712-1728. https://doi.org/10.1158/1055-9965.EPI-14-0412.
  5. Yoon HJ, An HJ, Kim CH, Kim YH, Wee SH, Moon JS. Performance assessment of registration, sales and the regulatory management system of in vitro diagnostic veterinary medical reagents in Korea. J Prev Vet Med. 2015;39:119-125. http://doi.org/10.13041/jpvm.2015.39.3.119.
  6. Pang LY, Argyle DJ. Veterinary oncology: Biology, big data and precision medicine. Vet J. 2016;213:38-45. https://doi.org/10.1016/j.tvjl.2016.03.009.
  7. An HJ, Yoon HJ, Kim CH, Wee SH, Moon JS. Performance assessment and improvement plan of the regulatory management system of veterinary medical devices in Korea. Korean J Vet Res. 2015;55:97-103. https://doi.org/10.14405/kjvr.2015.55.2.97
  8. Gibson TJ, Jackson EL. The economics of animal welfare. Rev Sci Tech. 2017;36:125-135. https://doi.org/10.20506/rst.36.1.2616.
  9. Pomba C, Rantala M, Greko C, Baptiste KE, Catry B, van Duijkeren E, et al, Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother. 2017;72:957-968. https://doi.org/10.1093/jac/dkw481.
  10. Talbot TR, Bratzler DW, Carrico RM, Diekema DJ, Hayden MK, Huang SS, et al. Public reporting of health care-associated surveillance data: recommendations from the healthcare infection control practices advisory committee. Ann Intern Med. 2013;159:631-635. https://doi.org/10.7326/0003-4819-159-9-201311050-0001.
  11. Morris JS. Genomic and proteomic profiling for cancer diagnosis in dogs. Vet J. 2016;215:101-109. https://doi.org/10.1016/j.tvjl.2016.01.003.
  12. Finocchiaro LME, Glikin GC. Recent clinical trials of cancer immunogene therapy in companion animals. World J Exp Med. 2017;7:42-48. https://doi.org/10.5493/wjem.v7.i2.42.
  13. Langhorn R, Willesen JL. Cardiac troponins in dogs and cats. J Vet Intern Med. 2016;30:36-50. https://doi.org/10.1111/jvim.13801.
  14. Carreton E, Morchon R, Montoya-Alonso JA. Cardiopulmonary and inflammatory biomarkers in heartworm disease. Parasit Vectors. 2017;10:534. https://doi.org/10.1186/s13071-017-2448-2.
  15. De Loor J, Daminet S, Smets P, Maddens B, Meyer E. Urinary biomarkers for acute kidney injury in dogs. J Vet Intern Med. 2013;27:998-1010. https://doi.org/10.1111/jvim.12155.
  16. Jeffery U, Staber J, LeVine D. Using the laboratory to predict thrombosis in dogs: An achievable goal?. Vet J. 2016;215:10-20. https://doi.org/10.1016/j.tvjl.2016.03.027.
  17. Jeon BH. Diagnosis of disease using blood biomarker discovery trend, BRIC View 2017-T24. [Internet]. Pohang: Biological research information center; 2017 [cited 2019 January 16]. Available from: http://www.ibric.org/myboard/read.php?Board=report&id=2767.
  18. Kycko A, Reichert M. Proteomics in the search for biomarkers of animal cancer. Curr Protein Pept Sci. 2014;15:36-44. https://doi.org/10.2174/1389203715666140221110945
  19. Rodriguez-Antona C, Taron M. Pharmacogenomic biomarkers for personalized cancer treatment. J Intern Med. 2015;277:201-217. https://doi.org/10.1111/joim.12321.
  20. Bussard KM, Siracusa LD. Understanding mitochondrial polymorphisms in cancer. Cancer Res. 2017;77:6051-6059. https://doi.org/10.1158/0008-5472.CAN-17-1939.
  21. Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med. 2014;20:460-469. https://doi.org/10.1016/j.molmed.2014.06.005.
  22. Previdi MC, Carotenuto P, Zito D, Pandolfo R, Braconi C. Noncoding RNAs as novel biomarkers in pancreatic cancer: what do we know? Future Oncol. 2017;13:443-453. https://doi.org/10.2217/fon-2016-0253.
  23. Barani B, Rajasingh S, Rajasingh J. Exosomes: outlook for future cell-free cardiovascular disease therapy. Adv Exp Med Biol. 2017;998:285-307. https://doi.org/10.1007/978-981-10-4397-0_19.
  24. Burnett DL, Cave NJ, Gedye KR, Bridges JP. Investigation of cell-free DNA in canine plasma and its relation to disease. Vet Q. 2016;36:122-129. https://doi.org/10.1080/01652176.2016.1182230.
  25. Gielis EM, Ledeganck KJ, De Winter BY, Del Favero J, Bosmans JL, Claas FH, et al. Cell-free DNA: An upcoming biomarker in transplantation. Am J Transplant. 2015;15:2541-2451. https://doi.org/10.1111/ajt.13387.
  26. Cheng F, Su L, Qian C. Circulating tumor DNA: a promising biomarker in the liquid biopsy of cancer. Oncotarget. 2016;7:48832-48841. https://doi.org/10.18632/oncotarget.9453.
  27. Ulrich BC, Paweletz CP. Cell-free DNA in oncology: Gearing up for clinic. Ann Lab Med. 2018;38:1-8. https://doi.org/10.3343/alm.2018.38.1.1.
  28. Butler TM, Spellman PT, Gray J. Circulating-tumor DNA as an early detection and diagnostic tool. Curr Opin Genet Dev. 2017;42:14-21. https://doi.org/10.1016/j.gde.2016.12.003.
  29. Aarthy R, Mani S, Velusami S, Sundarsingh S, Rajkumar T. Role of circulating cell-free DNA in cancers. Mol Diagn Ther. 2015;19:339-350. https://doi.org/10.1007/s40291-015-0167-y.
  30. Peng M, Chen C, Hulbert A, Brock MV, Yu F. Non-blood circulating tumor DNA detection in cancer. Oncotarget. 2017;8:69162-69173. https://doi.org/10.18632/oncotarget.19942.
  31. Inoue A, Maeda S, Kinoshita R, Tsuboi M, Yonezawa T, Matsuki N. Density of tumor-infiltrating granzyme B-positive cells predicts favorable prognosis in dogs with transitional cell carcinoma. Vet Immunol Immunopathol. 2017;190:53-56. https://doi.org/10.1016/j.vetimm.2017.07.001.
  32. Shah R, Jones E, Vidart V, Kuppen PJ, Conti JA, Francis NK. Biomarkers for early detection of colorectal cancer and polyps: systematic review. Cancer Epidemiol Biomarkers Prev. 2014;23:1712-1728. https://doi.org/10.1158/1055-9965.EPI-14-0412.
  33. Kanojia D1, Garg M, Gupta S, Gupta A, Suri A. Sperm-associated antigen 9 is a novel biomarker for colorectal cancer and is involved in tumor growth and tumorigenicity. Am J Pathol. 2011;178:1009-1020. https://doi.org/10.1016/j.ajpath.2010.11.047.
  34. Sledge DG, Webster J, Kiupel M. Canine cutaneous mast cell tumors: A combined clinical and pathologic approach to diagnosis, prognosis, and treatment selection. Vet J. 2016;215:43-54. https://doi.org/10.1016/j.tvjl.2016.06.003.
  35. Hohenhaus AE, Kelsey JL, Haddad J, Barber L, Palmisano M, Farrelly J, et al. Canine cutaneous and subcutaneous soft tissue sarcoma: An evidence-based review of case management. J Am Anim Hosp Assoc. 2016;52:77-89. https://doi.org/10.5326/JAAHA-MS-6305.
  36. McDermott DF, Atkins MB. PD-1 as a potential target in cancer therapy. Cancer Med. 2013;2:662-673. https://doi.org/10.1002/cam4.106.
  37. Muenst S, Soysal SD, Tzankov A, Hoeller S. The PD-1/PD-L1 pathway: biological background and clinical relevance of an emerging treatment target in immunotherapy. Expert Opin Ther Targets. 2015;19:201-211. https://doi.org/10.1517/14728222.2014.980235
  38. Salmaninejad A, Khoramshahi V, Azani A, Soltaninejad E, Aslani S, Zamani MR, et al. PD-1 and cancer: molecular mechanisms and polymorphisms. Immunogenetics. 2018;70:73-86. https://doi.org/10.1007/s00251-017-1015-5.
  39. Hartley G, Faulhaber E, Caldwell A, Coy J, Kurihara J, Guth A, et al. Immune regulation of canine tumour and macrophage PDL1 expression. Vet Comp Oncol. 2016;10:1-16.
  40. Chiku VM, Silva KL, de Almeida BF, Venturin GL, Leal AA, de Martini CC, et al. PD-1 function in apoptosis of T lymphocytes in canine visceral leishmaniasis. Immunobiology. 2016;221:879-888. https://doi.org/10.1016/j.imbio.2016.03.007
  41. Paltrinieri S, Gradoni L, Roura X, Zatelli A, Zini E. Laboratory tests for diagnosing and monitoring canine leishmaniasis. Vet Clin Pathol. 2016;45:552-578. https://doi.org/10.1111/vcp.12413.
  42. Nijveldt RJ, Teerlink T, van Guldener C, Prins HA, van Lambalgen AA, Stehouwer CD, et al. Handling of asymmetrical dimethylarginine and symmetrical dimethylarginine by the rat kidney under basal conditions and during endotoxaemia. Nephrol Dial Transplant. 2003;18:2542-2550. https://doi.org/10.1093/ndt/gfg452
  43. Al Banchaabouchi M, Marescau B, Possemiers I, D'Hooge R, Levillain O, De Deyn PP. NG, NG-dimethylarginine and NG, NG-dimethylarginine in renal insufficiency. Pflugers Arch. 2000;439:524-531.
  44. Nijveldt RJ, Van Leeuwen PA, Van Guldener C, Stehouwer CD, Rauwerda JA, Teerlink T. Net renal extraction of asymmetrical (ADMA) and symmetrical (SDMA) dimethylarginine in fasting humans. Nephrol Dial Transplant. 2002;17:1999-2002. https://doi.org/10.1093/ndt/17.11.1999
  45. Fleck C, Schweitzer F, Karge E, Busch M, Stein G. Serum concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine in patients with chronic kidney diseases. Clin Chim Acta. 2003;336:1-12. https://doi.org/10.1016/S0009-8981(03)00338-3
  46. Kielstein JT, Salpeter SR, Bode-Boeger SM, Cooke JP, Fliser D. Symmetric dimethylarginine (SDMA) as endogenous marker of renal function-a meta-analysis. Nephrol Dial Transplant. 2006;21:2446-2451. https://doi.org/10.1093/ndt/gfl292
  47. Feliers D, Lee DY, Gorin Y, Kasinath BS. Symmetric dimethylarginine alters endothelial nitric oxide activity in glomerular endothelial cells. Cell Signal. 2015;27:1-5. https://doi.org/10.1016/j.cellsig.2014.09.024
  48. Schepers E, Speer T, Bode-Boger SM, Fliser D, Kielstein JT. Dimethylarginines ADMA and SDMA: the real water-soluble small toxins? Semin Nephrol. 2014;34:97-105. https://doi.org/10.1016/j.semnephrol.2014.02.003
  49. Lee SJ, Park S. Usefulness of the neutrophil gelatinase-associated lipocalin (NGAL) kit for acute kidney injury patients at the emergency medical center in Daegu. Korean J Clin Lab Sci. 2016;48:49-53. https://doi.org/10.15324/kjcls.2016.48.2.49.
  50. Woodruff PG, Boushey HA, Dolganov GM, Barker CS, Yang YH, Donnelly S, et al. Genome-wide profiling identifies epithelial cell genes associated with asthma and with treatment response to corticosteroids. Proc Natl Acad Sci USA. 2007;104:15858-63. https://doi.org/10.1073/pnas.0707413104
  51. Cai C, Yang J, Hu S, Zhou M, Guo W. Relationship between urinary cys\-teinyl leukotriene E4 levels and clinical response to antileukotriene treat\-ment in patients with asthma. Lung. 2007;185:105-12. https://doi.org/10.1007/s00408-006-0001-8
  52. Specjalski K, Chelminka M, Jassem E. YKL-40 protein correlates with the phenotype of asthma. Lung. 2015;193:189-94. https://doi.org/10.1007/s00408-015-9693-y
  53. Sim DW, Lee JH. Biomarkers of adult asthma and personalized medicine. Allergy Asthma Respir Dis. 2016;4:4-13. http://doi.org/10.4168/aard.2016.4.1.4.
  54. Aronson JK, Ferner RE. Biomarkers-A general review. Curr Protoc Pharmacol. 2017;76:1-17. https://doi.org/10.1002/cpph.19.
  55. Tyers, M, Mann, M. From genomics to proteomics. Nature. 2003;422:193-197. https://doi.org/10.1038/nature01510
  56. Mayeux, R. Biomarkers: potential uses and limitations. NeuroRx. 2004;1:182-188. https://doi.org/10.1602/neurorx.1.2.182
  57. Schlotterer, C. The evolution of molecular markers-just a matter of fashion? Nat Rev Genet. 2004;5:63-69. https://doi.org/10.1038/nrg1249
  58. Lesko, LJ, Atkinson, A. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol. 2001;41:347-366. https://doi.org/10.1146/annurev.pharmtox.41.1.347
  59. Bhattacharya SK, Lee RK, Grus FH. Molecular biomarkers in glaucoma. Invest Ophthalmol Vis Sci. 2013;54:121-131. https://doi.org/10.1167/iovs.12-11067
  60. Rachakonda V, Pan TH, Le WD. Biomarkers of neurodegenerative disorders: how good are they? Cell Res. 2004;14:349-358. https://doi.org/10.1038/sj.cr.7290235
  61. Purewal R, Christley R, Kordas K, Joinson C, Meints K, Gee N, et al. Companion animals and child/adolescent development: A systematic review of the evidence. Int J Environ Res Public Health. 2017;14. pii: E234. http://doi.org/10.3390/ijerph14030234.
  62. Allan R. Companion animal medicine: fresh challenges in the evidence-based, client-focused fast lane. Vet Rec. 2016; 179:38-40. http://doi.org/10.1136/vr.i3156.
  63. An HJ, Hyang-Jin Yoon, Chung-Hyun Kim, Sung-Hwan Wee, Jin-San Moon. Performance assessment and improvement plan of the regulatory management system of veterinary medical devices in Korea. Korean J Vet Res. 2015;55:97-103. https://doi.org/10.14405/kjvr.2015.55.2.97
  64. Friedman E, Krause-Parello CA. Companion animals and human health: benefits, challenges, and the road ahead for human-animal interaction. Rev Sci Tech. 2018;37:71-82. http://doi.org/10.20506/rst.37.1.2741.