References
- W.R.Bloom and H.Heyer, Harmonic Analysis of Probability Measures on Hypergroups, Walter de Gruyter. Berlin, New-York. 1995.
- I.Cherednik, A unifications of Knizhnik Zamolodchnikov equations and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991), 411-432. https://doi.org/10.1007/BF01243918
- I.Cherednik, Inverse Harish-Chandra transform and difference operators, Int. Math. Res. Not. 15 (1997), 733-750. https://doi.org/10.1155/S1073792897000482
- Deepmala, A Study on Fixed Point Theorems for Nonlinear Contractions and its Applications, Ph.D. Thesis (2014), Pt. Ravishankar Shukla University, Raipur 492 010, Chhatisgarh, India.
- C.F.Dunkl, The measure algebra of a locally compact hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331-348. https://doi.org/10.1090/S0002-9947-1973-0320635-2
- G.J.Heckman and E.M.Opdam, Root systems and hypergeometric functions, I. Compos. Math. 64 (1987), 329-352.
- G.J.Heckman and H.Schlichtkrull, Harmonic Analysis and Special Functions on Symmetric Spaces, Academic Press, 1994.
- R.I.Jewett, Spaces with an abstract convolution of measures, Adv. Math. 18 (1) (1975), 1-101. https://doi.org/10.1016/0001-8708(75)90002-X
-
R.A.Kunke and E.M.Stein, Uniformly bounded representations and harmonic analysis of
$2{\times}2$ real unimodular group, Amer. J. Math. 82 (1962), 1-62. https://doi.org/10.2307/2372876 - L.H.Loomis, An introduction to abstract harmonic analysis, D.Van Nostrand Company, Inc-Toronto, New-York, London, 1953.
- V.N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis (2007), Indian Institute of Technology, Roorkee 247 667, Uttarakhand, India.
- V.N. Mishra, K. Khatri, L.N. Mishra, Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications (2013), 2013:586.doi:10.1186/1029-42X-2013-586.
- L.N. Mishra, On existence and behavior of solutions to some nonlinear integral equations with Applications, Ph.D. Thesis (2017), National Institute of Technology, Silchar 788 010, Assam, India.
- E.M.Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1), (1995), 75-121. https://doi.org/10.1007/BF02392487
- E.M.Opdam, Lecture Notes on Dunkl Operators for Real and Complex Re ection Groups, MSJ Mem. Vol.8. Mathematical Society of Japan. Tokyo. 2000.
- H.K. Pathak and Deepmala, Common fixed point theorems for PD-operator pairs under Relaxed conditions with applications, Journal of Computational and Applied Mathematics 239 (2013), 103-113. https://doi.org/10.1016/j.cam.2012.09.008
- M.Rosler, Positive convolution structure for a class of Heckman-Opdam hyper-geometric functions of type BC, J. Funct.Anal. 258 (2010), 2779-2800. https://doi.org/10.1016/j.jfa.2009.12.007
- W.Rudin, Real and complex analysis, Mc. Graw Hill Inc. Second edition 1974.
- B.Schapira, Contributions to the hypergeometric function theory of Heckman and Opdam, Sharp estimates. Schwartz space, heat kernel, Geom. Funct. Anal. 18 (2008), 222-250. https://doi.org/10.1007/s00039-008-0658-7
- R.Spector, Apercu de la theorie des hypergroupes In: Analyse harmonique sur les groupes de Lie (Sem. Nancy-Strasbourg, 1973-1975) p.643-673. Lect. Notes Math. 497, Springer, Berlin, 1975.
- K.Trimeche, Generalized Wavelets and Hypergroups, Gordon and Breach Science Publishers, 1997.
- K.Trimeche, The trigonometric Dunkl intertwining operator and its dual associated with the Cherednik operators and the Heckman-Opdam Theory, Adv. Pure Appl. Math. 1 (2010), 293-323. https://doi.org/10.1515/APAM.2010.015
- K.Trimeche, Harmonic analysis associated with the Cherednik operators and the Heckman-Opdam theory, Adv. Pure Appl. Math. 2 (2011), 23-46. https://doi.org/10.1515/APAM.2011.022
Cited by
- THE CHEREDNIK AND THE GAUSSIAN CHEREDNIK WINDOWED TRANSFORMS ON ℝd IN THE W-INVARIANT CASE vol.28, pp.4, 2020, https://doi.org/10.11568/kjm.2020.28.4.649
- The Wigner and Weyl transforms attached to the Heckman-Opdam-Jacobi theory on $${\mathbb {R}}^{d+1}$$ vol.12, pp.2, 2021, https://doi.org/10.1007/s11868-021-00404-z