DOI QR코드

DOI QR Code

단순화 모델에서의 응답스펙트럼과 시간이력 내진해석 결과를 활용한 해양플랜트용 매니폴드 실제품의 내진강도 평가

Seismic Access of Offshore Subsea Manifold using RSA and THA Seismic Analysis Results for Simplified Model

  • 이은호 (과학기술연합대학원대학교 생산기술전공(산업소재 및 스마트제조공학과)) ;
  • 곽시영 (과학기술연합대학원대학교 생산기술전공(산업소재 및 스마트제조공학과))
  • Lee, Eun-Ho (Industrial Technology(Industrial Materials and Smart Manufacturing Engineering), Korea University of Science and Technology(UST)) ;
  • Kwak, Si-Young (Industrial Technology(Industrial Materials and Smart Manufacturing Engineering), Korea University of Science and Technology(UST))
  • 투고 : 2018.10.05
  • 심사 : 2018.11.07
  • 발행 : 2019.02.28

초록

본 논문에서는 해양플랜트용 매니폴드 구조물의 내진해석을 위해, 단순화 모델에 대해 응답스펙트럽해석(RSA) 및 시간이력해석(THA)을 여러 조건으로 진행하여 비교 검토하였다. 응답스펙트럼해석은 ISO19901-2에 따른 내진설계 절차를 이용하였다. 시간이력해석의 경우, 응답스펙트럼으로 가속도와 변위에 대한 지진이력을 인공적으로 만든뒤 Explicit와 Implicit 솔버를 사용하여 해석하였다. 단자유도 모델을 사용하여 해석방법을 검증하였으며, 매니폴드 구조물을 단순화한 모델에서 시간이력해석과 응답스펙트럼해석법의 차이를 분석하였다. 복잡한 실제 구조물에 대해서 직접적인 시간이력해석은 불가능하므로 응답스펙트럼해석법을 적용하였고, 단순화 모델에서 분석한 결과 차이를 활용하여 실제 구조물의 안전성을 판단하였다.

In this paper, for a seismic analysis of an offshore subsea manifold, Response Spectrum Analysis(RSA) and Time History Analysis(THA) were conducted under a various analysis conditions. Response spectrum and seismic design procedure have followed ISO19901-2 code. In case of THA, The response spectrum were converted into artificial earthquake history and both of Explicit and Implicit solvers were used to examine the characteristics of seismic analysis. For the verification, Various seismic analysis methods were applied on a single degree of freedom beam model and a simplified model of the actual manifold. The difference between the results of RSA and THA on the simplified manyfold model evaluated for the analysis of the actual manifold. Because THA is impossible in case of real complex structure such as a manifold, Safety of the actual manifold structure was accessed by using the RSA and the difference between the results of RSA and THA from the simplified model.

키워드

참고문헌

  1. Chen, X., Duan, J., Qi, H., Li, Y. (2014) Rayleigh Damping in Abaqus/Explicit Dynamic Analysis, Appli. Mech. & Mater., 627, pp.288-294. https://doi.org/10.4028/www.scientific.net/AMM.627.288
  2. Choi, Y.K., Nam, M.S. (1998) Response of Open-ended Pipe Pile Foundation at Offshore Sites to Seaquake Induced by the Vertical Seismic Excitation of the Seafloor, J. Earthq. Eng. Soc. Korea, 2(1), pp.11-21.
  3. DNV (2011) Comparison of API, ISO, and NORSOK Offshore Structural Standards, Technical Report No.EP034373-2011-01, pp.128-132.
  4. ISO 19901-2 (2004) Petroleum and Natural Gas Industries-Specific Requires for offshore Structures Part 2: Seismic Design Procedures and Criteria
  5. Jeff, C. (2010) Study of Deepwater Currents in the Eastern Gulf of Mexico, OCS Study BOEMRE 2010-041, Regulation and Enforcement Gulf of Mexico OCS Region, U.S Department of the Interior, p.468.
  6. Kim, D.K. (2018) Structural System Laboratory, http://www.kim2kie.com/3_ach/SSL_Software.php, (accessed Oct. 5, 2018)
  7. Kim, D.K., Lee, B.R. (2009) Korean Materials for Earthquake Analyses of Underground Structures, Comput. Struct. Eng., 22(3), pp.41-53.
  8. Kim, J.M., Jeong, U.J., Kim, J.W., Kim, D.A. (2009) Methods for Dynamic Analysis of Underground Structures, Comput. Struct. Eng., 22(3), pp.17-20.
  9. KS B ISO 19901-2 (2010) Petroleum and Natural Gas Industries - Specific Requirements for Offshore Structures - Part 2: Seismic Design Procedures and Criteria, Korea Agency for Technology and Standards.
  10. Lee, J.H., Lee, S.B., Kim, J.K. (2012) Earthquake Response Analysis of an Offshore Wind Turbine Considering Fluid-Structure-Soil Interaction, J. Earthq. Eng. Soc. Korea, 16(3), pp.1-12. https://doi.org/10.5000/EESK.2012.16.3.001