DOI QR코드

DOI QR Code

고출력 백색 광원용 Y3Al5O12;Ce3+,Pr3+ 투명 세라믹 형광체의 광학특성

Optical Properties of Y3Al5O12;Ce3+,Pr3+ Transparent Ceramic Phosphor for High Power White Lighting

  • 강태욱 (부경대학교 LED 공학협동과정) ;
  • 임석규 (부경대학교 융합디스플레이공학과) ;
  • 김종수 (부경대학교 융합디스플레이공학과) ;
  • 정용석 (부경대학교 융합디스플레이공학과)
  • Kang, Taewook (Interdisciplinary Program of LED and Solid State Light Engineering, Pukyong National University) ;
  • Lim, Seokgyu (Dept. of Display Science and Engineering, Pukyong National University) ;
  • Kim, Jongsu (Dept. of Display Science and Engineering, Pukyong National University) ;
  • Jeong, Yongseok (Dept. of Display Science and Engineering, Pukyong National University)
  • 투고 : 2018.11.07
  • 심사 : 2019.01.06
  • 발행 : 2019.02.27

초록

We prepared $Y_3Al_5O_{12};Ce^{3+},Pr3^{+}$ transparent ceramic phosphor using a solid state reaction method. By XRD pattern analysis and SEM measurement, our phosphors reveal an Ia-3d(230) space group of cubic structure, and the transparent ceramic phosphor has a polycrystal state with some internal cracks and pores. In the Raman scattering measurement with an increasing temperature, lattice vibrations of the transparent ceramic phosphor decrease due to its more perfect crystal structure and symmetry. Thus, low phonon generation is possible at high temperature. Optical properties of the transparent ceramic phosphor have broader excitation spectra due to a large internal reflection. There is a wide emission band from the green to yellow region, and the red color emission between 610 nm and 640 nm is also observed. The red-yellow phosphor optical characteristics enable a high Color Rendering Index (CRI) in combination with blue emitting LED or LD. Due to its good thermal properties of low phonon generation at high temperature and a wide emission range for high CRI characteristics, the transparent ceramic phosphor is shown to be a good candidate for high power solid state white lighting.

키워드

참고문헌

  1. S. Nakamura, T. Mukai and M. Senoh, Appl. Phys. Lett., 64, 1687 (1994). https://doi.org/10.1063/1.111832
  2. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys and R. O. Carlson, Phys. Rev. Lett., 9, 366 (1962). https://doi.org/10.1103/PhysRevLett.9.366
  3. Z. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Y. V. Zhilyaev, E. P. Morozov, E. L. Portnoi and V. G. Trofim, Sov. Phys. Semicond, 4, 1573 (1971).
  4. I. Hayashi, M. B. Panish, P. W. Foy and S. Sumuski, Appl. Phys. Lett., 17, 109 (1970). https://doi.org/10.1063/1.1653326
  5. J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone and Y. Park, Jpn. J. Appl. Phys., 44, L649 (2005). https://doi.org/10.1143/JJAP.44.L649
  6. H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon and S. S. Kim, J. Lumin., 126, 371 (2007). https://doi.org/10.1016/j.jlumin.2006.08.093
  7. M. Sekita, H. Haneda and S. Shirasaki, J. Appl. Phys., 69, 3709 (1998). https://doi.org/10.1063/1.348959
  8. K. Papagelis, G. Kanelis, S. Ves and G. A. Kourouklis, Phys. Status Solidi B, 233, 134 (2002). https://doi.org/10.1002/1521-3951(200209)233:1<134::AID-PSSB134>3.0.CO;2-Z
  9. G. F. Herrmann, J. J. Pearson, K. A. Wickersheim and R. A. Buchanan, J. Appl. Phys., 37, 1312 (1966). https://doi.org/10.1063/1.1708447
  10. L. T. Su, A.I. Tok, Y. Zhao, N. Ng and F. Y. Boey, J. Phys. Chem., 113, 5974 (2009).
  11. G. Blasse, B. C. Grabmaier, Luminescent Materials, p. 25, Springer, Berlin, Germany, (1994).
  12. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa and T. Y. Fan, J. Appl. Phys., 98, 103514 (2005). https://doi.org/10.1063/1.2128696