DOI QR코드

DOI QR Code

River Water Quality Impact Assessment in an Intensive Livestock Farming Area During Rainfall Event using Physicochemical characteristics and Nitrogen Stable Isotopes

이화학적 특성과 질소 안정동위원소비를 활용한 강우시 가축사육 밀집 지역의 하천 수질 영향 평가

  • Ryu, Hong-Duck (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Baek, Un-Il (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Kim, Sun-Jung (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Kim, Deok-Woo (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Kim, Chansik (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Kim, Min-Seob (Environmental Measurement and Analysis Center, Environmental Infrastructure Research Department, National Institute of Environmental Research) ;
  • Shin, Dongseok (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research) ;
  • Lee, Jae-Kwan (Water Environment Research Department, National Institute of Environmental Research) ;
  • Chung, Eu Gene (Watershed and Total Load Management Research Division, Water Environment Research Department, National Institute of Environmental Research)
  • 류홍덕 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 백운일 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 김선정 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 김덕우 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 김찬식 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 김민섭 (국립환경과학원 환경기반연구부 환경측정분석센터) ;
  • 신동석 (국립환경과학원 물환경연구부 유역총량연구과) ;
  • 이재관 (국립환경과학원 물환경연구부) ;
  • 정유진 (국립환경과학원 물환경연구부 유역총량연구과)
  • Received : 2018.08.09
  • Accepted : 2018.10.04
  • Published : 2019.01.31

Abstract

This study aimed to assess the impact of livestock excreta discharged from an Intensive Livestock Farming Area (ILFA) on river water quality during a rainfall event. The Bangcho River, which is one of the 7 tributaries in the Cheongmi River watershed, was the study site. The Cheongmi River watershed is the second largest area for livestock excreta discharge in Korea. Our results clearly showed that, during the rainfall event, the water quality of the Bangcho River was severely deteriorated due to the COD, $NH_4-N$, T-N, $PO_4-P$, T-P, and heavy metals (Cu, Zn, and Mn) in the run-off from nearby farmlands, where the soil comprised composted manure and unmanaged livestock excreta. In addition, stable isotope analysis revealed that most of nitrogen ($NH_4-N$ and $NO_3-N$) in the run-off was from the ammonium and nitrate in the livestock excreta. The values of ${\delta}^{15}N_{NH4}$ and ${\delta}^{15}N_{NO3}$ for the Bangcho River water sample, which was obtained from the downstream of mixing zone for run-off water, were lower than those for the run-off water. This indicates that there were other nitrogen sources upstream river in the river. It was assumed from ${\delta}^{15}N_{NH4}$ and ${\delta}^{15}N_{NO3}$ stable isotope analyses that these other nitrogen sources were naturally occurring soil nitrogen, nitrogen from chemical fertilizers, sewage, and livestock excreta. Therefore, the use of physicochemical characteristics and nitrogen stable isotopes in the water quality impact assessment enabled more effective analysis of nitrogen pollution from an ILFA during rainfall events.

Keywords

References

  1. Aravena, R., Evans, M. L., Cherry, J. A., 2005, Stable isotopes of oxygen and nitrogen in source identification of nitrate from septic systems, Ground Water, 31, 180-186. https://doi.org/10.1111/j.1745-6584.1993.tb01809.x
  2. Begum, A., Ramaiah, M., Harikrishna, Khan, I., Veena, K., 2009, Heavy metal pollution and chemical profile of Cauvery River water, E-J. Chem., 6(1), 47-52. https://doi.org/10.1155/2009/154610
  3. Biswas, S., Kranz, W. L., Shapiro, C. A., Snow, D. D., Bartelt-Hunt, S. L., Mamo, M., Tarkalson, D. D., Zhang, T. C., Shelton, D. P., van Donk, S. J., Mader, T. L., 2017, Effect of rainfall timing and tillage on the transport of steroid hormones in runoff from manure amended row crop fields, J. Hazard. Mater., 324, 436-447. https://doi.org/10.1016/j.jhazmat.2016.11.009
  4. Black, A. S., Waring, S. A., 1977, The natural abundance of $^{15}N$ in the soil-water system of a small catchment area, Aust. J. Soil Res., 15, 51-57. https://doi.org/10.1071/SR9770051
  5. Blaustein, R. A., Hill, R. L., Micallef, S. A., Shelton, D. R., Pachepsky, Y. A., 2016, Rainfall intensity effects on removal of fecal indicator bacteria from solid dairy manure applied over grass-covered soil, Sci. Total Environ., 539, 583-591. https://doi.org/10.1016/j.scitotenv.2015.07.108
  6. Blaustein, R. A., Pachepsky, Y. A., Hill, R. L., Shelton, D. R., 2015, Solid manure as a source of fecal indicator microorganisms: Release under simulated rainfall, Environ. Sci. Technol., 49, 7860-7869. https://doi.org/10.1021/acs.est.5b01095
  7. Daniels, M. E., Smith, W. A., Schmidt, W., Clasen, T., Jenkins, M. W., 2016, Modeling Cryptosporidium and Giardia in ground and surface water sources in rural India: Associations with latrines, livestock, damaged wells, and rainfall patterns, Environ. Sci. Technol., 50, 7498-7507. https://doi.org/10.1021/acs.est.5b05797
  8. Degnan, J. R., Bohlke, J. K., Pelham, K., Langlais, D. M., Walsh, G. J., 2016, Identification of groundwater nitrate contamination from explosives used in road construction: isotopic, chemical, and hydrologic evidence, Environ. Sci. Technol., 50, 593-603. https://doi.org/10.1021/acs.est.5b03671
  9. Desimone, L. A., Howes, B. L., 1996, Denitrification and nitrogen transport in a coastal aquifer receiving wastewater discharge, Environ. Sci. Technol., 30, 1152-1162. https://doi.org/10.1021/es950366p
  10. Deutsch, B., Voss, M., Fischer, H., 2009, Nitrogen transformation processes in the Elbe Riber: Distinguishing between assimilation and denitrification by means of stable isotope ratios in nitrate, Aquat. Sci., 71, 228-237. https://doi.org/10.1007/s00027-009-9147-9
  11. Diebel, M. W., Zanden, J. V., 2009, Nitrogen stable isotopes in streams: effects of agricultural sources and transformations, Ecol. Appl., 19, 1127-1134. https://doi.org/10.1890/08-0327.1
  12. Dillon, K. S., Chanton, J. P., 2005, Nutrient transformations between rainfall and stormwater runoff in an urbanized coastal environment: Sarasota Bay, Florida, Limnol. Oceanogr., 50(1), 62-69. https://doi.org/10.4319/lo.2005.50.1.0062
  13. Dupas, R., Delmas, M., Dorioz, J., Garnier, J., Moatar, F., Gascuel-Odoux, C., 2015, Assessing the impact of agricultural pressures on N and P loads and eutrophication risk, Ecol. Indic., 48, 396-407. https://doi.org/10.1016/j.ecolind.2014.08.007
  14. Feast, N. A., Dennis, P. F., 1996, A Comparison of methods for nitrogen isotope analysis of groundwater, Chem. Geol., 129, 167-171. https://doi.org/10.1016/0009-2541(95)00186-7
  15. Fenech, C., Rock, L., Nolan, K., Tobin, J., Morrissey, A., 2012, The potential for a suite of isotope and chemical markers to differentiate sources of nitrate contamination: A review. Water Res., 46, 2023-2041. https://doi.org/10.1016/j.watres.2012.01.044
  16. Fry, B., Gace, A., McClelland, J. W., 2003, Chemical indicators of anthropogenic nitrogen loading in four pacific estuaries, Pac. Sci., 57, 77-101. https://doi.org/10.1353/psc.2003.0004
  17. Go, W. R., Kim, J. Y., Yoo, J. H., Lee, J. H., Kunhikrishnan, A., Lee, J. M., Kim, K. H., Kim, D. H. Kim, W. I., 2012, Monitoring of heavy metals in agricultural soils from consecutive applications of commercial liquid pig manure, Korean J. Environ. Agric., 31(3), 217-223. https://doi.org/10.5338/KJEA.2012.31.3.217
  18. Goody, D. C., Lapworth, D. J., Bennett, S. A., Heaton, T. H. E., Williams, P. J., Surridge, B. W. J., 2016, A Multi-stable isotope framework to understand eutrophication in aquatic ecosystems, Water Res., 88, 623-633. https://doi.org/10.1016/j.watres.2015.10.046
  19. Grande, J. D., Karthikeyan, K. G., Miller, P. S., Powell, J. M., 2005, Corn residue level and manure application timing effects on phosphorus lesses in runoff, J. Environ. Qual., 34(5), 1620-1631. https://doi.org/10.2134/jeq2004.0462
  20. Heaton, T. H. E., 1986, Isotopic studies of nitrogen pollution in the hydrosphere and atmosphere: a review, Chem. Geol., 59, 87-102. https://doi.org/10.1016/0168-9622(86)90059-X
  21. Hosono, T., Tokunaga, T., Kagabu, M., Nakata, H., Orishikida, T., Lin, I., Shimada, J., 2013, The use of ${\delta}^{15}N$ and ${\delta}^{18}O$ tracers with an understanding of groundwater flow dynamics for evaluating the origins and attenuation mechanisms of nitrate pollution, Water Res., 47, 2661-2675. https://doi.org/10.1016/j.watres.2013.02.020
  22. Hseu, Z. Y., 2004, Evaluating heavy metal contents in nine composts using four digestion methods, Bioresource Technol., 95, 53-59. https://doi.org/10.1016/j.biortech.2004.02.008
  23. Hyodo, F., Nishikawa, J., Kohzu, A., Fujita, N., Saizen, I., Tsogtbaatar, J., Javzan, C., Enkhtuya, M., Gantomor, D., Amartuvshin, N., Ishii, R., Wada, E., 2012, Variation in nitrogen isotopic composition in the Selenga river watershed, Mongolia. Limnology, 13, 155-161. https://doi.org/10.1007/s10201-011-0351-7
  24. Jensen, E., 1991, Evaluation of automated analysis of 15N and total N in plant material and soil, Plant Soil, 133, 83-92. https://doi.org/10.1007/BF00011902
  25. Kim, C. G., Jeong, H. K., Im, P. E., Kim, T. H., 2015, Directions for introducing total maximum nutrient loading system of cultivated land, Korea Rural Economic Institute, Korea.
  26. Kim, C. S., Ryu, H. D., Chung, E. G., Kim, Y. S., Lee, J. K., 2018, A Review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: Sample preparation, liquid chromatography, and mass spectrometry, J. Environ. Manage., 217, 629-645. https://doi.org/10.1016/j.jenvman.2018.04.006
  27. Kreitler, C. W., 1979, Nitrogen-isotope ratio study of soils and groundwater nitrate from alluvial fan aquifers in Texas, J. Hydrol., 42, 147-170. https://doi.org/10.1016/0022-1694(79)90011-8
  28. Kreitler, C. W., Browning, A., 1983, Nitrogen-isotope analysis of groundwater nitrate in carbonate aquifers: Natural soures versus human pollution, J. Hydrol., 61, 285-301. https://doi.org/10.1016/0022-1694(83)90254-8
  29. Kunkle, W. E., Carr, L. E., Carter, T. A., Bossard, E. H., 1981, Effect of flock and floor type on levels of nutrients and heavy metals in broiler litter, Poultry Sci., 60, 1160-1164. https://doi.org/10.3382/ps.0601160
  30. Lee, J. H., Go, W. R., Kunhikrishnan, A., Yoo, J. H., Kim, J. Y., Kim, W. I., 2011, Chemical composition and heavy metal contents in commercial liquid pig manures, Korean J. Soil Sci. Fert., 44(6), 1085-1088. https://doi.org/10.7745/KJSSF.2011.44.6.1085
  31. Lee, J. W., Park, T. J., Kim, M. S., Kim, J. M., Lee, S. H., Lee, S. K., Lee, Y. S., Lee, W. S., Yu, S. J., Rhew, D. H., 2016, Stable isotope on the evaluation of water quality in the presence of WWTPs in rivers, Environ. Sci. Pollut. Res., 23, 18175-18182. https://doi.org/10.1007/s11356-016-6990-9
  32. Ma, G., Wang, Y., Bao, X., Hu, Y., Liu, Y., He, L., Wang, T., Meng, F., 2015, Nitrogen pollution characteristics and source analysis using the stable isotope tracing method in Ashi River, northeast China, Environ. Earth. Sci., 73, 4831-4839. https://doi.org/10.1007/s12665-014-3786-4
  33. Mahlknecht, J., Daessle, L. W., Esteller, M. V., Torres-Martinez, J. A., Mora, A., 2018, Groundwater flow processes and human impact along the Arid US-Mexican Border, Evidenced by environmental tracers: The case of Tacate, Baja California, Int. J. Env. Res. Pbu. He., 15, 887-906. https://doi.org/10.3390/ijerph15050887
  34. Mallin, M. A., 2000, Impacts of industrial animal production on rivers and estuaries, Am. Sci., 88(1), 26-37. https://doi.org/10.1511/2000.1.26
  35. Marrugo-Negrete, J., Pinedo-Hernandez, J., Diez, S., 2017, Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinu River Basin, Colombia, Environ. Res., 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021
  36. McClelland, J. W., Valiela, I., 1998, Linking nitrogen in estuarine producers to land-derived sources, Limnol. Oceanogr., 43(4), 577-585. https://doi.org/10.4319/lo.1998.43.4.0577
  37. McLaughlin, K., Nezlin, N. P., Howard, M. D. A., Beck, C. D. A., Kudela, R. M., Mengel, M. J., Robertson, G. L., 2017, Rapid nitrification of wastewater ammonium near coastal ocean outfalls, Southern California, USA, Estuar. Coast. Shelf. S., 186, 263-275. https://doi.org/10.1016/j.ecss.2016.05.013
  38. Ministry of Environment, 2017, 2017 White paper of environment, 268-270.
  39. Ministry of Environment, 2017, The annual report to the nation on the status of pollution sources, 2015, National Institute of Environmental Research, 43-66.
  40. Motew, M., Booth, E. G., Carpenter, S. R., Chen, X., Kucharik, C. J., 2018, The synergistic effect of manure supply and extreme precipitation on surface water quality, Environ. Res. Lett., 13, 1-13.
  41. Neal, C., Heathwaite, A. L., 2005, Nutrient mobility within river basins: a European perspective, J. Hydrol., 304, 477-490. https://doi.org/10.1016/j.jhydrol.2004.07.045
  42. Petersen, S. O., Sommer, S. G., Beline, F., Burton, C., Dach, J., Dourmad, J. Y., Leip, A., Misselbrook, T., Nicholson, F., Poulsen, H. D., Provolo, G., Sorensen, P., Vinneras, B., Weiske, A., Bernal, M. P., Bohm, R., Juhasz, C., Mihelic, R., 2007, Recycling of livestock manure in a whole-farm perspective, Livest. Sci., 112, 180-191. https://doi.org/10.1016/j.livsci.2007.09.001
  43. Rees, H. W., Chow, T. L., Zebarth, B. J., Xing, Z., Toner, P, Lavoie, J., Daigle, J. L., 2011, Effects of supplemental poultry manure applications on soil erosion and runoff water quality from a loam soil under potato production in northwestern New Brunswick, Can. J. Soil Sci., 91, 595-613. https://doi.org/10.4141/cjss10093
  44. Reza, R., Singh, G., 2010, Heavy metal contamination and its indexing approach for river water, Int. J. Environ. Sci. Tech., 7(4), 785-792. https://doi.org/10.1007/BF03326187
  45. Ryu, H. D., Kim, M. S., Chung, E. G., Baek, U. I., Kim, S. J., Kim, D. W., Kim, Y. S., Lee, J. K., 2018, Assessment and identification of nitrogen pollution sources in the Cheongmi River with intensive livestock farming areas, Korea, Environ. Sci. Pollut. R., 25, 13499-13510. https://doi.org/10.1007/s11356-018-1554-9
  46. Spalding, R. F., Watts, D. G., Schepers, J. S., Burbach, M. E., Exner, M. E., Poreda, R. J., Martin, G. E., 2001, Controlling nitrate leaching in irrigated agriculture, J. Environ. Qual., 30, 1184-1194. https://doi.org/10.2134/jeq2001.3041184x
  47. Stocker, M. D., Pachepsky, Y. A., Hill, R. L., Shelton, D. R., 2015, Depth-dependent survial of Escherichia coli and Enterococci in soil after manure application and simulated rainfall, Appl. Environ. Microb., 81, 4801-4808. https://doi.org/10.1128/AEM.00705-15
  48. Terada, K., Koibuchi, Y., Isobe, M., 2017, Rainfall effect on sediment and nutrient fluxes in a small mangrove river, Okinawa, Japan, J. Mar. Res., 75(1), 1-17. https://doi.org/10.1357/002224017821219027
  49. Toda, H., Uemura, Y., Okino, T., Kawanishi, T., Kawashima, H., 2002, Use of nitrogen stable isotope ratio of periphyton for monitoring nitrogen sources in a river system, Water Sci. Technol., 46, 431-435.
  50. Vinod, P. N., Chandramouli, P. N., Koch, M., 2015, Estimation of nitrate leaching in groundwater in an agruculturally used area in the State Karnataka, India, using existing model and GIS, Aquat. Procedia, 4, 1047-1053. https://doi.org/10.1016/j.aqpro.2015.02.132
  51. Voss, M., Larsen, B., Leivuori, M., Vallius, H., 2000, Stable isotope signals of eutrophication in coastal Baltic Sea sediments, J. Marine Syst., 25, 287-298. https://doi.org/10.1016/S0924-7963(00)00022-1
  52. Withers, P. J. A., Lord, E. I., 2002, Agricultural nutrient inputs to rivers and groundwaters in the UK: policy, environmental management and research needs, Sci. Total Environ., 282-283, 9-24. https://doi.org/10.1016/S0048-9697(01)00935-4
  53. Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund, M., Boeckx, P., 2009, Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater, Water Res., 43, 1159-1170. https://doi.org/10.1016/j.watres.2008.12.048
  54. Yuan, Z. W., Wang, L., Lan, T., Ji, Y., Zhao, H., 2016, Water quality assessment and source identification of water pollution in the Banchengzi reservoir, Beijing, China, Desalin. Water Treat., 57, 1-14. https://doi.org/10.1080/19443994.2016.1119929