DOI QR코드

DOI QR Code

UWB 레이더를 사용한 호흡 및 심박 감지 알고리즘

Respiration and Heartbeat detection algorithm using UWB radar

  • 투고 : 2018.11.06
  • 심사 : 2018.11.17
  • 발행 : 2019.01.31

초록

UWB(Ultra-wideband)는 송신 안테나에서 UWB 대역을 송신한 신호를 수신 안테나를 통해 받은 신호를 가지고 목표물을 판단하는 고해상도 근거리 초광대역 레이더로 비접촉으로 사람의 호흡 및 심박을 감지할 수 있고, 환경에 영향을 받지 않아 최근 활용도가 높아지고 있다. 본 논문에서는 UWB 레이더 신호를 이용하여 사람의 호흡과 심박수를 감지하는 알고리즘을 구현한다. 인체에서부터 반사되어 들어온 레이더 신호를 메디안 필터, 칼만 필터, 밴드 패스필터 등을 이용하여 처리한다. 또한 호흡수와 심박수를 추출하기 위하여 CZT를 이용한다. 비교하는 심박 데이터로는 ECG(Electrocardiogram)를 사용하였으며, 약 98% 이상 일치함을 확인하였다.

Ultra Wideband (UWB) Radar is a high-resolution radar for short distance detection which uses signals transmitted and received by each antennas in order to detect a target. It is possible to detect the respiration and heartbeat of a person without contact It is getting more and more often utilized since it is not affected by physical environment. In this paper, we implement an algorithm to detect human respiration and heartbeat rate using UWB radar signal. We process radar signals reflected from human body using Median filter, Kalman filter, Band Pass filter and so on. We also use CZT to extract breathing and heart rate. ECG (Electrocardiogram) was used for comparison of heartbeat data and we confirm that each data of ECG and UWB Radar were more than 98% identical each other.

키워드

HOJBC0_2019_v23n1_70_f0001.png 이미지

Fig. 1 Configuration diagram of UWB biometric detection algorithm

HOJBC0_2019_v23n1_70_f0002.png 이미지

Fig. 2 Median and Kalman Filter

HOJBC0_2019_v23n1_70_f0003.png 이미지

Fig. 3 Band Pass Filter

HOJBC0_2019_v23n1_70_f0004.png 이미지

Fig. 4 Running average Filter

HOJBC0_2019_v23n1_70_f0005.png 이미지

Fig. 5 A part that extracts a section for predicting motion

HOJBC0_2019_v23n1_70_f0006.png 이미지

Fig. 6 A part that Respiratory rate check

HOJBC0_2019_v23n1_70_f0007.png 이미지

Fig. 7 Comparison of FFT and CZT(Respiratory rate)

HOJBC0_2019_v23n1_70_f0008.png 이미지

Fig. 8 Comparison of FFT and CZT(Heart rate)

HOJBC0_2019_v23n1_70_f0009.png 이미지

Fig. 9 A part that Heart rate check

HOJBC0_2019_v23n1_70_f0010.png 이미지

Fig. 10 Exponential moving average filter

HOJBC0_2019_v23n1_70_f0011.png 이미지

Fig. 11 Test results of Respiratory rate

HOJBC0_2019_v23n1_70_f0012.png 이미지

Fig. 12 Test results of heart rate

참고문헌

  1. I. C. Ko, and H. C. Park, "Apnea Detection and Respiration Rate Estimation Using IR-UWB Radar Signals," The Journal of Korean Institute of Electromagnetic Engineering and Science, vol. 28, no. 10, pp. 802-809, Oct. 2017. https://doi.org/10.5515/KJKIEES.2017.28.10.802
  2. F. Khan, and S. H. Cho, "A Detailed Algorithm for Vital Sign Monitoring of a Stationary/Non-Stationary Human through IR-UWB Radar," Sensors, vol. 17, no. 2, pp. 290-304, Feb. 2017. https://doi.org/10.3390/s17020290
  3. X. Hu, and T. Jin, "Short-Range Vital Signs Sensing Based on EEMD and CWT Using IR-UWB Radar," Sensors, vol. 16, no. 12, pp. 2025-2042, Nov. 2016. https://doi.org/10.3390/s16122025
  4. S. K. Leem, F. Khan, and S. H. Cho, "Vital Sign Monitoring and Mobile Phone Usage Detection Using IR-UWB Radar for Intended Use in Car Crash Prevention," Sensors, vol. 17, no. 6, pp. 1240-1264, May 2017. https://doi.org/10.3390/s17061240
  5. J.W. Choi, J. H. Kim, and S. H. Cho, "A counting algorithm for multiple objects using an IR-UWB radar system," Network Infrastructure and Digital Content (IC-NIDC), 2012 3rd IEEE International Conference on, Beijing, pp. 591-595, 2012.
  6. X. Yang, W. Yin, and L. Zhang, "People Counting Based on CNN Using IR-UWB Radar," International Conference on Communications in China (ICCC), Qingdao, pp. 1-5, 2017.
  7. F. Adib, H. Mao, and Z. Kabelac, "Smart Homes that Monitor Breathing and Heart Rate," Proceedings of the 33rd annual ACM conference on human factors in computing systems, Seoul, pp. 837-846, 2015.