DOI QR코드

DOI QR Code

A Visualization of Movie Reviews based on a Semantic Network Analysis

의미연결망 분석을 활용한 영화 리뷰 시각화

  • Kim, Seulgi (Department of Interaction Science, Sungkyunkwan University) ;
  • Kim, Jang Hyun (Department of Interaction Science, Sungkyunkwan University)
  • Received : 2018.09.09
  • Accepted : 2018.11.07
  • Published : 2019.01.31

Abstract

This study visualized users reaction about movies based on keywords with high frequency. For this work, we collected data of movie reviews on . A total of six movies were selected, and we conducted the work of data gathering and preprocessing. Semantic network analysis was used to understand the relationship among keywords. Also, NetDraw, packaged with UCINET, was used for data visualization. In this study, we identified the differences in characteristics of review contents regarding each movie. The implication of this study is that we visualized movie reviews made by sentence as keywords and explored whether it is possible to construct the interface to check users' reaction at a glance. We suggest that further studies use more diverse movie reviews, and the number of reviews for each movie is used in similar quantities for research.

본 연구는 <네이버 영화> 페이지의 리뷰 데이터를 수집하여, 출현 빈도가 높은 단어를 중심으로 영화 관람객의 반응을 시각화하는 작업을 수행하였다. 이를 위해 총 6편의 영화를 선정하여 데이터 수집 및 정제과정을 거쳤으며, 의미연결망 분석(Semantic network analysis)을 활용하여 단어 간 관계성을 파악하고자 하였다. 데이터 시각화 작업에는 UCINET과 함께 패키지화된 NetDraw가 사용되었다. 본 연구의 시사점은 문장으로 작성된 영화 관람객의 리뷰를 키워드 중심으로 시각화하여, 소비자들의 반응을 한 눈에 확인하는 리뷰 인터페이스 구현이 가능한지 탐색하였다는 점이다. 본 연구를 통해 영화 리뷰를 구성하는 키워드를 시각화하고, 리뷰 내용에서 영화별 특성의 차이를 확인하였다는 점에서 본 연구가 의미를 가진다고 하겠다. 후속 연구는 보다 많은 영화의 리뷰를 활용할 필요성이 제기되며, 각 영화별 리뷰의 수도 비슷한 양으로 맞추어 연구에 활용해야 할 것이다.

Keywords

HOJBC0_2019_v23n1_1_f0001.png 이미지

Fig. 1 Train to Busan

HOJBC0_2019_v23n1_1_f0002.png 이미지

Fig. 2 Tunnel

HOJBC0_2019_v23n1_1_f0003.png 이미지

Fig. 3 The Age of Shadows

HOJBC0_2019_v23n1_1_f0004.png 이미지

Fig. 4 My New Sassy Girl

HOJBC0_2019_v23n1_1_f0005.png 이미지

Fig. 5 REAL

HOJBC0_2019_v23n1_1_f0006.png 이미지

Fig. 6 RV: Resurrected Victims

Table. 1 Movie Information and Aggregate Data

HOJBC0_2019_v23n1_1_t0001.png 이미지

References

  1. J. H. Kim, and K. R. Bhatele, "Recognition using Cyber bullying in view of Semantic-Enhanced Minimized Auto-Encoder," Asia-pacific Journal of Convergent Research Interchange, HSST, vol. 2, no. 4, pp. 7-14, Dec. 2016. https://doi.org/10.21742/apjcri.2016.03.02
  2. J. A. Yeap, J. Ignatius, and T. Ramayah, "Determining consumers' most preferred eWOM platform for movie reviews: A fuzzy analytic hierarchy process approach," Computers in Human Behavior, vol. 31, pp. 250-258, 2014. https://doi.org/10.1016/j.chb.2013.10.034
  3. A. Elberse, and J. Eliashberg, "Demand and supply dynamics for sequentially released products in international markets: The case of motion pictures," Marketing Science, vol. 22, no. 3, pp. 329-354, 2003. https://doi.org/10.1287/mksc.22.3.329.17740
  4. C. H. Ban, and D. H. Kim, "Analysis of University Department Name using the R," Journal of the Korea Institute of Information and Communication Engineering, vol. 22, no. 6, pp. 829-834, 2018. https://doi.org/10.6109/JKIICE.2018.22.6.829
  5. O. Lee, S. B. Park, D. Chung, and E. S. You, "Movie box-office analysis using social big data," The Journal of the Korea Contents Association, vol. 14, no. 10, pp. 527-538, 2014. https://doi.org/10.5392/JKCA.2014.14.10.527
  6. Y. H. Cho, Y. S. Park, and H. J. Kim, "Changes in Review Length Based on the Popularity of Movies Using Big Data," The Journal of the Korea Contents Association, vol. 18, no. 5, pp. 367-375, 2018. https://doi.org/10.5392/JKCA.2018.18.05.367
  7. M. Mestyan, T. Yasseri, and J. Kertesz, "Early prediction of movie box office success based on Wikipedia activity big data," PloS one, vol. 8, no. 8, 2013, e71226. https://doi.org/10.1371/journal.pone.0071226
  8. Y. J. Oh, and S. H. Chae, "Movie Rating Inference by Construction of Movie Sentiment Sentence using Movie comments and ratings," Journal of Internet Computing and Services, vo. 16, no. 2, pp. 41-48, 2015. https://doi.org/10.7472/jksii.2015.16.2.41
  9. L. Doshi, J. Krauss, S. Nann, and P. Gloor, "Predicting movie prices through dynamic social network analysis," Procedia-Social and Behavioral Sciences, vol. 2, no. 4, pp. 6423-6433, 2010. https://doi.org/10.1016/j.sbspro.2010.04.052
  10. S. Kim, S. Jeon, J. Kim, Y. H. Park, and H. Yu, "Finding core topics: Topic extraction with clustering on tweet," In Cloud and Green Computing (CGC), 2012 Second International Conference IEEE, pp. 777-782, Nov. 2012.
  11. J. Y. Kim, and S. H. Lee, "A study on the collaboration network analysis of document delivery service in science and technology," Journal of Korean Library and Information Science Society, vol. 44, no. 4, pp. 443-463, 2013. https://doi.org/10.16981/kliss.44.4.201312.443