DOI QR코드

DOI QR Code

Numerical Study on the Super Sonic Phenomenon of Compressed Air according to the Flow Path Conditions

유로조건에 따른 압축공기 초음속 유동 현상의 해석 연구

  • Kim, Seung Mo (School of Mechanical Engineering, Korea University of Technology and Education) ;
  • Kim, Moosun (Urban Transit Research Team, Korea Railroad Research Institute)
  • 김승모 (한국기술교육대학교 기계공학부) ;
  • 김무선 (한국철도기술연구원 도시철도연구팀)
  • Received : 2018.10.02
  • Accepted : 2019.01.04
  • Published : 2019.01.31

Abstract

The braking force for a train is generally provided by compressed air. The pressure valve system that is used to apply appropriate braking forces to trains has a complex flow circuit. It is possible to make a channel shape that can increase the flow efficiency by 3D printing. There are restrictions on the flow shape design when using general machining. Therefore, in this study, the compressed air flow was analyzed in a pressure valve system by comparing flow paths made with conventional manufacturing methods and 3D printing. An analysis was done to examine the curvature magnitude of the flow path, the diameter of the flow path, the magnitude of the inlet and reservoir pressure, and the initial temperature of the compressed air when the flow direction changes. The minimization of pressure loss and the uniformity of the flow characteristics influenced the braking efficiency. The curvilinear flow path made through 3D printing was advantageous for improving the braking efficiency compared to the rectangular shape manufactured by general machining.

일반적으로 열차 제동을 위한 제동력은 압축공기를 활용하여 제공된다. 열차에 상황별로 적절 제동력을 가하기 위해 사용하는 압력밸브 시스템은 복잡한 유동 회로를 가진다. 이를 일반적인 기계가공으로 제작 시, 유로형상 설계에 제약이 있는 반면, 3D 프린팅 기법으로 제작시 유동 효율을 증대할 수 있는 유로형상 제작이 가능하다. 따라서 이번 연구에서는 기존의 제작 방식으로 유로를 제작하는 경우와, 3D프린팅의 장점을 살려, 자유로운 형상의 유로를 제작하는 경우를 비교하여, 압력 밸브 시스템 내의 압축공기 유동의 현상을 해석적으로 분석하였다. 해석을 위한 조건으로는, 유로 방향이 바뀔 때 유로의 곡률 크기, 유로의 직경, 입구 및 저장소 압력의 크기, 그리고 압축공기의 초기 온도로 구분하였다. 압력손실의 최소화 및 유동 특성의 균일성이 제동 효율 개선에 영향을 주는 요인이므로, 수치해석을 통한 연구를 통해 일반적인 기계가공을 통한 직각 유로 형상보다는 3D 프린팅을 통한 곡률 유로의 경우가 제동효율 개선에 유리함을 확인하였다.

Keywords

SHGSCZ_2019_v20n1_470_f0001.png 이미지

Fig. 1. Example of main brake system

SHGSCZ_2019_v20n1_470_f0002.png 이미지

Fig. 2. Shape of flow path fabricated by typical machining(left) and 3D printing(right)

SHGSCZ_2019_v20n1_470_f0003.png 이미지

Fig. 3. Geometry of the pipe domain

SHGSCZ_2019_v20n1_470_f0004.png 이미지

Fig. 4. Reference Line for Data Extraction

SHGSCZ_2019_v20n1_470_f0005.png 이미지

Fig. 5. Data Acquisition Time for Comparison (3 Cases : C12 at R0, C22 at R25, C32 at R50)

SHGSCZ_2019_v20n1_470_f0006.png 이미지

Fig. 6. Typical Pressure Contour according to time : (a) C12 Case, (b) C22 Case, (c) C32 Case

SHGSCZ_2019_v20n1_470_f0007.png 이미지

Fig. 7. Result Distribution by Initial Temperature

SHGSCZ_2019_v20n1_470_f0008.png 이미지

Fig. 8. Result Distribution by Pressure Difference

SHGSCZ_2019_v20n1_470_f0009.png 이미지

Fig. 9. Result Distribution by Flow Path Diameter

SHGSCZ_2019_v20n1_470_f0010.png 이미지

Fig. 10. Comparison of orthogonal(R0) and Curvature Radius(R25, R50) in Standard Case (Initial temp. 25℃, 8bar to 1bar, Diameter 8mm) - C12, C22, C32 Cases

SHGSCZ_2019_v20n1_470_f0011.png 이미지

Fig. 11. Typical Super Sonic Pressure Distribution of 3D Case (C22)

SHGSCZ_2019_v20n1_470_f0012.png 이미지

Fig. 12. Verification : Numerical Comparison of 2D and 3D Data

Table 1. Design Cases for Simulation

SHGSCZ_2019_v20n1_470_t0001.png 이미지

References

  1. H.J.Lee, "Structure Optimization and 3D Printing Manufacture Technology of Pull Cord Switch Components Applied to Power Plant Coal Yard", Journal of the Korea Academia-Industrial cooperation Society, vol.17, no.10, pp.319-330, 2016. https://doi.org/10.5762/KAIS.2016.17.10.319
  2. H.W.Yi, Y.M.Lee, B.S.Shin, T.G.Lee, M.C.Kang, "Prototype Manufacturing Using 3D Printing and Characteristics of Flow and Dynamics for High Temperature Solenoid", Journal of the Korean Society for Precision Engineering, vol.33, no.5, pp.341-348, 2016. https://doi.org/10.7736/KSPE.2016.33.5.341
  3. M.Kim, "Design and Manufacturing Technology of Heat Exchanger in Air Compressor for Railroad Vehicle by 3D Printing Process", Journal of the Korea Academia-Industrial cooperation Society, vol.18, no.11, pp.802-809, 2017.
  4. V. Yakhot, S. Thangam, T. B. Gatski, S. A. Orszag, C.G. Speziale, "Development of turbulence models for shear flows by a double expansion technique", Physics of Fluids, Vol. 4, No. 7, pp. 1510-1520, 1922. https://doi.org/10.1063/1.858424
  5. F. R. Menter, "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA, Vol. 32, No. 8, pp. 1598-1605, 1994. https://doi.org/10.2514/3.12149
  6. ANSYS FLUENT Theory Guide 16.2 ANSYS Inc., 2016
  7. J. D. Anderson "fundamentals of aerodynamics", Fifth edition, Mcgraw hill, pp. 515-543, 2011.