DOI QR코드

DOI QR Code

Distribution Analysis of Land Surface Temperature about Seoul Using Landsat 8 Satellite Images and AWS Data

Landsat 8 위성영상과 AWS 데이터를 이용한 서울특별시의 지표면 온도 분포 분석

  • Lee, Jong-Sin (Dept. of Construction Engineering Education, Chungnam National University) ;
  • Oh, Myoung-Kwan (Dept. of Electrical & Electronics Service, Hyejeon College)
  • 이종신 (충남대학교 건설공학교육과) ;
  • 오명관 (혜전대학교 전기전자서비스과)
  • Received : 2018.10.29
  • Accepted : 2019.01.04
  • Published : 2019.01.31

Abstract

Recently, interest in urban temperature change and ground surface temperature change has been increasing due to weather phenomenon due to global warming, heat island phenomenon caused by urbanization in urban areas. In Korea, weather data such as temperature and precipitation have been collected since 1904. In recent years, there are 96 ASOS stations and 494 AWS weather observation stations. However, in the case of terrestrial networks, terrestrial meteorological data except measurement points are predicted through interpolation because they provide point data for each installation point. In this study, to improve the resolution of ground surface temperature measurement, the surface temperature using satellite image was calculated and its applicability was analyzed. For this purpose, the satellite images of Landsat 8 OLI TIRS were obtained for Seoul Metropolitan City by seasons and transformed to surface temperature by applying NASA equation to the thermal bands. The ground measurement data was based on the temperature data measured by AWS. Since the AWS temperature data is station based point data, interpolation is performed by Kriging interpolation method for comparison with Landsat image. As a result of comparing the satellite image base surface temperature with the AWS temperature data, the temperature difference according to the season was calculated as fall, winter, summer, based on the RMSE value, Spring, in order of applicability of Landsat satellite image. The use of that attribute and AWS support starts at $2.11^{\circ}C$ and RMSE ${\pm}3.84^{\circ}C$, which reflects information from the extended NASA.

최근 지구온난화로 인한 기상이변, 도시화로 인한 도심의 열섬현상 등으로 도시 온도변화 및 지표면 온도 변화에 대한 관심이 증대되고 있다. 우리나라에서는 1904년부터 현재까지 기온, 강수량 등 기상 데이터를 수집하고 있다. 최근에는 종관기상관측장비(ASOS; Automated Surface Observing System) 96개소, 방재기상관측장비(AWS) 494개소의 지상기상관측망을 운영하고 있다. 그러나 지상관측망의 경우 각 설치 지점에 대한 점 데이터를 제공하고 있으므로, 측정 지점을 제외한 곳의 지상기상 데이터는 보간법을 통해 예측하고 있는 상황이다. 이에 본 연구에서는 지상의 지표면 온도 측정의 해상도를 향상시키기 위해 위성영상을 이용한 지표면 온도를 산출하고, 그 활용 가능성을 분석하고자 하였다. 이를 위해 서울특별시를 대상으로 Landsat 8 OLI TIRS의 위성영상을 계절별로 획득하고, 열적외 밴드에 NASA식을 적용하여 지표면 온도로 변환하였다. 지상의 측정 자료는 AWS를 통해 측정한 기온 데이터를 활용하였다. AWS 기온 데이터는 관측소 기반의 점 데이터이므로, Landsat 영상과의 비교를 위해 크리깅 보간법으로 보간을 수행하였다. 위성영상기반의 지표면 온도와 AWS 기온 데이터를 비교한 결과 계절에 따른 온도차는 RMSE값을 바탕으로 가을, 겨울, 여름, 봄의 순서로 Landsat 위성영상의 적용 가능성을 판단할 수 있었으며, 위성영상의 시기별 평균온도와 AWS 온도 사이에는 최대 평균 $2.11^{\circ}C$이내, 최대 RMSE ${\pm}3.84^{\circ}C$인 것을 감안하면 정확도 향상을 위해 NASA식에 보정값이 필요하다는 것을 알 수 있었다.

Keywords

SHGSCZ_2019_v20n1_434_f0001.png 이미지

Fig. 1. Study area

SHGSCZ_2019_v20n1_434_f0002.png 이미지

Fig. 2. Results of land surface (2017.08.26)

SHGSCZ_2019_v20n1_434_f0003.png 이미지

Fig. 3. Results of land surface (2018.02.02)

SHGSCZ_2019_v20n1_434_f0004.png 이미지

Fig. 4. Results of land surface (2018.05.25)

SHGSCZ_2019_v20n1_434_f0005.png 이미지

Fig. 5. Results of land surface (2018.11.01)

SHGSCZ_2019_v20n1_434_f0006.png 이미지

Fig. 6. Interpolated results of AWS (2017.08.26)

SHGSCZ_2019_v20n1_434_f0007.png 이미지

Fig. 7. Interpolated results of AWS (2018.02.02)

SHGSCZ_2019_v20n1_434_f0008.png 이미지

Fig. 8. Interpolated results of AWS (2018.05.25)

SHGSCZ_2019_v20n1_434_f0009.png 이미지

Fig. 9. Interpolated results of AWS (2018.11.01)

SHGSCZ_2019_v20n1_434_f0010.png 이미지

Fig. 10. Temperature difference (2017.08.26)

SHGSCZ_2019_v20n1_434_f0011.png 이미지

Fig. 11. Temperature difference (2018.02.02)

SHGSCZ_2019_v20n1_434_f0012.png 이미지

Fig. 12. Temperature difference (2018.05.25)

SHGSCZ_2019_v20n1_434_f0013.png 이미지

Fig. 13. Temperature difference (2018.11.01)

Table 1. Information of satellite images

SHGSCZ_2019_v20n1_434_t0001.png 이미지

Table 2. Information of AWS stations

SHGSCZ_2019_v20n1_434_t0002.png 이미지

References

  1. Wikimedia, Wikipedia [Internet]. Urban Heat Island [cited 2018 December 20], Available From: https://ko.wikipedia.org/wiki/%EB%8F%84%EC%8B%9C_%EC%97%B4%EC%84%AC (accessed December 20, 2018)
  2. J. Yim, G. Lee, "Estimating Urban Temperature by Combining Remote Sensing Data and Terrain Based Spatial Interpolation Method", Journal of the Korean Cartographic Association, Vol.17, No.2, pp.75-88, 2017. DOI: https://doi.org/10.16879/jkca.2017.17.2.075
  3. O. Rozenstein, Z. Qin, Y. Derimian, A. Karnieli, "Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm", Sensors, Vol.14, No.4, pp.5768-5780. DOI: https://doi.org/10.3390/s140405768
  4. J. B. Jee, Y. J. Choi, "Conjugation of Landsat Data for Analysis of the Land Surface Properties in Capital Area", Journal of Korean Earth Science Society, Vol.35, No.1, pp.54-68, 2014. DOI: https://doi.org/10.5467/JKESS.2014.35.1.54
  5. H. S. Shin, E. Chang, S. Hong, "Estimation of Near Surface Air Temperature Using MODIS Land Surface Temperature Data and Geostatistics", Journal of Korea Spatial Information Society, Vol.22, No.1, pp.55-63, 2014. DOI: https://doi.org/10.12672/ksis.2014.22.1.055
  6. J. M. Kang, M. S. Ka, S. S. Lee, J. K. Park, "Detection of Heat Change in Urban Center Using Landsat Imagery", Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol.28, No.2, pp.197-206, 2010.
  7. H. K. Lee, J. S. Lee, "Computation of Surface Sea Temperature around the Fukushima to Grasp the Effect of Nuclear Power Plant Accident in Japan", Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, Vol.6, No.8, pp.585-592, 2016. DOI: https://doi.org/10.14257/AJMAHS.2016.08.58
  8. USGS, "Landsat 8 (L8) Data Users Handbook Ver 2.0.", USA, pp.55-61, 2016.
  9. U. S. Department of Interior, U. S. Geological Survey [Internet]. Conversion to TOA Reflectance [cited 2018 December 15], Available From: https://landsat.usgs.gov/using-usgs-landsat-8-product (accessed December 15, 2018)
  10. J. K. Park, J. S. Lee, "Analysis of Abnormal High Temperature Phenomena in Cixi-si of China using Landsat Satellite Images", Journal of the Korea Academia-Industrial cooperation Society, Vol.18, No.8, pp.34-40, 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.8.34
  11. H. C. Yun, K. Y. Jung, J. S. Lee, "Monitoring of Temperature Change about Cheonji about for Bio Ecology Environmental Management", International Journal of Bio-Science and Bio-Technology, Vol.5, No.4, pp.81-90, 2013. https://doi.org/10.14257/ijbsbt.2013.5.6.09
  12. D. C. Reuter, C. M. Richardson, F. A. Pellerano, J. R. Irons, R. G. Allan, M. Anderson, M. D. Jhabvala, A. W. Lunsford, M. Montanaro, R. L. Smith, Z. Tesfaye K. J. Thome, "The Thermal Infrared Sensor (TIRS) on Landsat 8 : Design Overview and Pre-Launch Characterization", Remote Sensing, Vol.7, No.1, pp.1135-1153, 2015. DOI: https://doi.org/10.3390/rs70101135