DOI QR코드

DOI QR Code

Probabilistic Fatigue Life Evaluation of Steel Railway Bridges according to Live-Dead Loads Ratio

강철도교의 활하중-사하중 비에 따른 확률기반 피로수명 평가

  • Lee, Sangmok (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Lee, Young-Joo (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
  • 이상목 (울산과학기술원 도시환경공학부) ;
  • 이영주 (울산과학기술원 도시환경공학부)
  • Received : 2018.11.11
  • Accepted : 2019.01.04
  • Published : 2019.01.31

Abstract

Various studies have been conducted to evaluate the probabilistic fatigue life of steel railway bridges, but many of them are based on a relatively simple model of crack propagation. The model assumes zero minimum stress and constant loading amplitude, which is not appropriate for the fatigue life evaluation of railway bridges. Thus, this study proposes a new probabilistic method employing an advanced crack propagation model that considers the live-dead load ratio for the fatigue life evaluation of steel railway bridges. In addition, by using the rainflow cycle counting algorithm, it can handle variable-amplitude loading, which is the most common loading pattern for railway bridges. To demonstrate the proposed method, it was applied to a numerical example of a steel railway bridge, and the fatigue lives of the major components and structural system were estimated. Furthermore, the effects of various ratios of live-dead loads on bridge fatigue life were examined through a parametric study. As a result, with the increasing live-dead stress ratio from 0 to 5/6, the fatigue lives can be reduced by approximately 30 years at both the component and system levels.

강철도교에 대한 확률기반 피로 수명 평가를 위한 많은 연구들이 그간 있어 왔지만, 대부분 상대적으로 단순한 피로 균열 진전 모델을 기반으로 한 연구들이었다. 이 모델은 최소 응력이 0이고 일정한 응력변동 진폭을 가정하기 때문에, 철도교의 피로수명 평가에는 적합하지 않다. 따라서 본 연구에서는 보다 고도화된 균열 진전 모델을 이용해 강철도교의 피로 수명을 평가하는 새로운 확률기반 기법을 제안하였다. 또한 이 기법은 철도교에서 흔히 발생하는 다양한 하중 변동 진폭을 rainflow cycle counting algorithm을 사용해 고려할 수 있어, 보다 현실적인 피로 수명을 평가할 수 있다. 제안된 기법을 강철도교 예제 모델에 적용하여 피로 수명을 주요 부재 및 시스템에 대해 평가하였다. 또한 다양한 활하중-사하중 비가 피로 수명에 끼치는 영향을 분석하였으며, 그 결과 활하중-사하중 응력 비가 0에서 5/6까지 증가함에 따라 부재와 시스템 수준 모두에서 피로 수명이 30년 내외까지 줄어드는 것을 확인하였다.

Keywords

SHGSCZ_2019_v20n1_339_f0001.png 이미지

Fig. 1. Cyclic loading for various values of R

SHGSCZ_2019_v20n1_339_f0002.png 이미지

Fig. 2. Steel railway bridge example

SHGSCZ_2019_v20n1_339_f0003.png 이미지

Fig. 3. Stress history for Members 13 and 27

SHGSCZ_2019_v20n1_339_f0004.png 이미지

Fig. 4. Reliability indices for five selected members obtained via proposed method (R=3/4)

SHGSCZ_2019_v20n1_339_f0005.png 이미지

Fig. 5. Reliability indices for two selected members and the entire system, as derived via the proposed method

Table 1. Maximum stress values of the five structural members with the overall highest stress values

SHGSCZ_2019_v20n1_339_t0001.png 이미지

Table 2. Statistical properties of random variables (RVs)

SHGSCZ_2019_v20n1_339_t0002.png 이미지

Table 3. Statistical properties of random variables

SHGSCZ_2019_v20n1_339_t0003.png 이미지

References

  1. C.-S. Kim and G.-H. Kang, "Fatigue analysis of reduction gears unit in rolling stock considering operating characteristics." Journal of the Korea Academia-Industrial cooperation Society, Vol. 12, No. 3, pp.1085-1090, 2011. DOI: https://doi.org/10.5762/kais.2011.12.3.1085
  2. M.A. Miner, "Cumulative damage in fatigue." Journal of Applied Mechanics, Vol. 12, No. 3, pp.159-164, 1945. https://doi.org/10.1115/1.4009458
  3. M.K. Chryssanthopoulos and T.D. Righiniotis, "Fatigue reliability of welded steel structures." Journal of Constructional Steel Research, Vol. 62, No. 11, pp.1199-1209. 2006. DOI: https://doi.org/10.1016/j.jcsr.2006.06.007
  4. J.W. Fisher, Fatigue and Fracture in Steel Bridges: Case Studies. JohnWiley & Sons, New York, NY, USA, 1984.
  5. H. Agerskov and J.A. Nielsen, "Fatigue in steel highway bridges under random loading." ASCE Journal of Structural Engineering, Vol. 125, No. 2, pp.152-162, 1999. DOI: https://doi.org/10.1061/(asce)0733-9445(1999)125:2(152)
  6. C. MacDougall, M.F. Green and S. Shillinglaw, "Fatigue damage of steel bridges due to dynamic vehicle loads." Journal of Bridge Engineering, Vol. 11, No. 3, pp.320-328, 2006. DOI: https://doi.org/10.1061/(asce)1084-0702(2006)11:3(320)
  7. Z.-G. Xiao, K. Yamada, J. Inoue and K. Yamaguchi, "Fatigue cracks in longitudinal ribs of steel orthotropic deck." International Journal of Fatigue, Vol. 28, No. 4, pp.409-416, 2006. DOI: https://doi.org/10.1016/j.ijfatigue.2005.07.017
  8. B.M. Imam, T.D. Righiniotis and M.K. Chryssanthopoulos, "Probabilistic fatigue evaluation of riveted railway bridges." Journal of Bridge Engineering, Vol. 13, pp.237-244, 2008. DOI: https://doi.org/10.1061/(asce)1084-0702(2008)13:3(237)
  9. Y.-S. Park, S.-Y. Han and B.-C. Suh, "Fatigue reliability analysis of steel bridge welding member by fracture mechanics method." Structural Engineering and Mechanics, Vol. 19, pp.347-359, 2005. DOI: https://doi.org/10.12989/sem.2005.19.3.347
  10. Z. Zhao, A. Haldar and F.L. Breen, "Fatigue-reliability evaluation of steel bridges." Journal of Structural Engineering, Vol. 120, pp.1608-1623, 1994. DOI: https://doi.org/10.1061/(asce)0733-9445(1994)120:5(1608)
  11. H.O. Madsen, Probabilistic and deterministic models for predicting damage accumulation due to time varying loading. Danish Engineering Academy, Lyngby, Denmark, 1983.
  12. M. Lukic and C. Cremona, "Probabilistic assessment of welded joints versus fatigue and fracture." Journal of Structural Engineering, Vol. 127, pp.211-218, 2001. DOI: https://doi.org/10.1061/(asce)0733-9445(2001)127:2(211)
  13. Y.-J. Lee, R.E. Kim, W. Suh and K. Park, "Probabilistic fatigue life updating for railway bridges based on local inspection and repair." Sensors, Vol. 17, No. 4, p.936, 2017. DOI: https://doi.org/10.3390/s17040936
  14. Y.-J. Lee and S. Cho, "SHM-based probabilistic fatigue life prediction for bridges based on FE model updating." Sensors, Vol. 16, No. 3, p.317, 2016. DOI: https://doi.org/10.3390/s16030317
  15. J.-S. Moon, "Fatigue behavior of PP-LFT used in FEM carrier with variation of stress ratio." Journal of the Korea Academia-Industrial cooperation Society, Vol. 16, No. 1, pp.8-14, 2015. DOI: https://doi.org/10.5762/kais.2015.16.1.8
  16. N.E. Dowling, C.A. Calhoun and A. Arcari, "Mean stress effects in stress-life fatigue and the Walker equation." Fatigue & Fracture of Engineering Materials & Structures Vol. 32, No. 3, pp.163-179, 2009. DOI: https://doi.org/10.1111/j.1460-2695.2008.01322.x
  17. P.C. Paris, P.C and F. Erdogan, "A critical analysis of crack propagation laws." Journal of Basic Engineering, Vol. 85, No. 3, pp.528-534, 1963. DOI: https://doi.org/10.1115/1.3656900
  18. Y.-J. Lee and J. Song, "System reliability updating of fatigue-induced sequential failures." Journal of Structural Engineering, Vol. 140, No. 3, 04013074-1-16, 2014. DOI: https://doi.org/10.1201/b16387-769
  19. J.C. Newman and I.S. Raju, "An empirical stress intensity factor equation for the surface crack." Engineering of Fracture Mechanics, Vol. 15, pp.185-192, 1981. DOI: https://doi.org/10.1016/0013-7944(81)90116-8
  20. A. Nieslony, "Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components." Mechanical Systems and Signal Processing, Vol. 23, No. 8, pp.2712-2721, 2009. DOI: https://doi.org/10.1016/j.ymssp.2009.05.010
  21. A. Der Kiureghian. Fisrt- and second-order reliability methods. chap.14, CRC press, Boca Raton, FL, USA, 2005.
  22. B. Sudret and A. Der Kiureghian. Stochastic finite element methods and reliability: a state-of-the-art report. Berkeley, CA, Department of Civil and Environmental Engineering, University of California, CA, USA, 2000.
  23. A. Genz, "Numerical computation of multivariate normal probabilities." Journal of Computational and Graphical Statistics, Vol. 1, pp.141-149, 1992. DOI: https://doi.org/10.2307/1390838
  24. T. Moan and R. Song, "Implications of inspection updating on system fatigue reliability of offshore structures." Journal of Offshore Mechanics and Arctic Engineering, Vol. 122, No. 3, pp.173-180, 2000. DOI: https://doi.org/10.1115/1.1286601
  25. H. Tada, P.C. Paris and G.R. Irwin. The stress analysis of cracks handbook. ASME, New York, NY, USA, 2000. DOI: https://doi.org/10.1115/1.801535
  26. N. Yazdani and P. Albrecht, "Crack growth rates of structural steel in air and aqueous environments." Engineering Fracture Mechanics, Vol. 32, No. 6, pp.997-1007, 1989. DOI: https://doi.org/10.1016/0013-7944(89)90015-5
  27. Y.-J. Lee and J. Song, "Finite-element-based system reliability analysis of fatigue-induced sequential failures." Reliability Engineering & System Safety, Vol. 108, pp.131-141, 2012. DOI: https://doi.org/10.1016/j.ress.2012.05.007