DOI QR코드

DOI QR Code

소형 제빙기에 사용되는 R-404A 대체 R-448A, R-449A의 Drop-in Test에 대한 연구

A Study on the Drop-in Tests of a Small Ice Maker Using R-404A Replacements R-448A and R-449A

  • 투고 : 2018.09.28
  • 심사 : 2019.01.04
  • 발행 : 2019.01.31

초록

그간 소형 제빙기에는 R-404A가 사용되어 왔으나 지구 온난화와 관련하여 대체 냉매 적용이 시급한 실정이다. 본 연구에서는 제빙기에 적용되어 온 R-404A를 대체할 R-448A와 R-449A에 대하여 drop-in test를 수행하였다. 시험은 외기 온도와 증발판에 공급되는 물 온도를 변화시키며 수행되었다. 실험 결과 R-404A의 일 평균 제빙량은 R-448A보다는 5.3%, R-449A보다는 4.2% 크게 나타났다. 이는 R-404A의 기체 밀도가 커서 냉매 순환량이 증가하기 때문으로 판단된다. 한편 R-448A와 R-449A의 제빙량을 비교하면 외기온도나 믈 온도가 낮아 제빙량이 많으면 R-448A가, 외기 온도나 물 온도가 높으면 R-449A가 우수한 성능을 보인다. 일 평균 소비 전력량은 R-448A나 R-449A보다 R-404A에서 대략 10% 크게 나타났다. 한편 성적계수의 경우 R-448A와 R-449A는 거의 동일하고 R-404A의 값보다는 3.0% 크게 나타났다. 현재 R-448A, R-449A의 증발, 응축 열전달에 대한 데이터가 부족한 실정으로 향후 이 부분에 대한 기초 연구가 필요할 것으로 판단된다.

R-404A, which is used widely in small-scale ice makers, is scheduled to be phased out because of its high global warming potential. In this study, drop-in tests were conducted using R-448A and R-449A, which replace R-404A, to modify the outdoor air and supply water temperatures. The results showed that the daily ice production rate of R-404A was 5.3% higher than that of R-448A and 4.2% higher than that of R-449A. This was attributed to the larger vapor density of R-404A, which resulted in a larger mass flow rate in the system. Between R-448A and R-449A, R-448A yielded a larger amount of ice at low air and water temperatures, whereas R-449A yielded a larger amount of ice at high air and water temperatures. The daily power consumption of R-404A was approximately 10% larger than those of R-448A and R-449A. The resulting COPs of R-448A and R-449A was similar, only 3.0% larger than that of R-404A. The literature survey showed that the condensation or evaporation data of R-448A or R-449A are very limited, and research on this issue is recommended.

키워드

SHGSCZ_2019_v20n1_21_f0001.png 이미지

Fig. 1. Photo of an unitary ice maker

SHGSCZ_2019_v20n1_21_f0002.png 이미지

Fig. 2. Refrigeration cycle of an unitary ice maker

SHGSCZ_2019_v20n1_21_f0003.png 이미지

Fig. 3. Photo of an evaporator plate

SHGSCZ_2019_v20n1_21_f0004.png 이미지

Fig. 4. Refrigeration cycles of the ice maker for R-404A, R-448A and R-449A

SHGSCZ_2019_v20n1_21_f0005.png 이미지

Fig. 5. Daily ice production for different outdoor/water temperatures

SHGSCZ_2019_v20n1_21_f0006.png 이미지

Fig. 6. Daily power consumption for different outdoor/water temperatures

SHGSCZ_2019_v20n1_21_f0007.png 이미지

Fig. 7. COP for different outdoor/water temperatures

Table 1. Properties of R-404A, R-448A, R-449A

SHGSCZ_2019_v20n1_21_t0001.png 이미지

Table 2. Test conditions of the ice maker

SHGSCZ_2019_v20n1_21_t0002.png 이미지

Table 3. Specification of major components

SHGSCZ_2019_v20n1_21_t0003.png 이미지

Table 4. Optimum refrigerant charge and expansion valve opening for different outdoor/water temperatures

SHGSCZ_2019_v20n1_21_t0004.png 이미지

Table 5. Test results at 21°C outdoor and 10°C water temperature

SHGSCZ_2019_v20n1_21_t0005.png 이미지

참고문헌

  1. L. Mishchenko, B. Hatton, V. Bahadur, J. A. Taylor, T. Krupenkin and J. Aizenberg, "Design of Ice-Free Nano-structured Surfaces Based on Repulsion of Ice Droplet," ACS Nano, Vol. 4, pp. 7699-7007, 2010. https://doi.org/10.1021/nn102557p
  2. Z. Jin, Z. Wang, D. Sui and Z. Yang, "The Impact and Freezing Process of a Water Droplet on Different Inclined Cold Surfaces," Int. J Heat Mass Trans., Vol. 97, pp. 211-213, 2016. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.024
  3. A. Feuillebois, A. Lasek, P. Creismeas, F. Pigeonneau and A. Szaniawski, "Freezing of a Subcooled Liquid Droplet," J. Colloid. Sci., Vol. 169, pp. 90-102, 1995. https://doi.org/10.1006/jcis.1995.1010
  4. H. H. Sait, "Heat Transfer Analysis and Effects of Feeding Tube Arrangement, Falling Film Behavior and Backslpash on Ice Formation Around Horizontal Tube Bundles," Energy Conv. Manage., Vol. 73, pp. 317-328, 2013. https://doi.org/10.1016/j.enconman.2013.05.010
  5. E.-H. Jung and K.-W. Park, "Ice Making Characteristics According to Changing Shape of Ice Making Tube," Korean J. Air-Cond. Refrig., Vol. 21, No. 5, pp. 291-296, 2009.
  6. H. Jannesari and N. Abdollahi, "Experimental and Numerical Study of Thin Ring and Annular Fin Effects on Improving the Ice Formation in Ice-on-Coil Thermal Storage Systems," Appl. Energy, Vol. 189, pp. 369-384, 2017. https://doi.org/10.1016/j.apenergy.2016.12.064
  7. A. Kulyakhtin, S. Kulyakhtin and S. Loset, "The Role of the Ice Heat Conduction in the Ice Growth Caused by Periodic Sea Spray," Cold Regions Sci. Tech., Vol. 127, pp. 93-108, 2016. https://doi.org/10.1016/j.coldregions.2016.04.001
  8. A. Mota-Babiloni, J. Navarro-Esbri, A. Barragan- Cervera, F. Moles and B. Peris, "Theoretical Comparison of Low GWP Alternatives for Different Refrigeration Configurations Taking R-404A as Baseline," Int. J. Refrig., Vol. 44, pp. 81-90, 2014. https://doi.org/10.1016/j.ijrefrig.2014.04.015
  9. A. Sethi, G. Pottker and S. Y. Motta, "Experimental Evaluation and Field Trial of Low Global Warming Potential R-404A Replacements for Commercial Refrigeration," Sci. Tech. Built. Environ., Vol. 22, No. 8, pp. 1175-1184, 2016. https://doi.org/10.1080/23744731.2016.1209032
  10. X. Wang and K. Amrane, "AHRI Low Global Warming Potential Alternative Refrigerants Evaluation Program (Low-GWP AREP) - Summary of Phase 1 Testing Results, 5th Int. Refrigeration Air-Cond. Conf., Purdue, USA, Paper 1554, 14-17 July, 2014.
  11. A. Mota-Babiloni, J. Navarro-Esbri, B. Peris, F. Moles and G. Verdu, "Experimental Evaluation of R-448A as R-404A Lower-GWP Alternative in Refrigeration Systems," Energy Convers. Manag., Vol. 105, pp. 756-762, 2015. https://doi.org/10.1016/j.enconman.2015.08.034
  12. P. Makhnatch, A. Mota-Babiloni, J. Rogstam and R. Khodabandeh, "Retrofit of Lower GWP Alternative R-449A into an Existing R-404A Indirect Supermarket Refrigeration System," Int. J. Refrig., Vol. 76, pp. 184-192, 2017. https://doi.org/10.1016/j.ijrefrig.2017.02.009
  13. REFPROP, NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP): Version 9.1, https://www.nist.gov/srd/refprop/.
  14. B.-M. Lee, Development of a Low GWP Ice Maker, Advanced Technology Center Assigned to Icetro Inc., 1st Year Report, 2017.
  15. ASHRAE Standard 29, Method of Testing Automatic Ice Makers, ASHRAE, 2009.