DOI QR코드

DOI QR Code

Evaluation on In-plane Shear Strength of Lightweight Composite Panels

경량 복합패널의 면내 전단 성능 평가

  • Hwang, Moon-Young (Department of Architectural Engineering, Chungbuk National University) ;
  • Kang, Su-Min (Department of Architectural Engineering, Chungbuk National University) ;
  • Lee, Byung-yun (Department of Architecture, Chungbuk National University) ;
  • Kim, Sung-Tae (Axia Materials CO., LTD.)
  • Received : 2018.10.12
  • Accepted : 2019.01.04
  • Published : 2019.01.31

Abstract

The number of natural disasters in Korea, such as earthquakes, is increasing. As a result, there is growing need for temporary residences or shelters for disaster conditions. The aim of this study was to produce post-disaster refugees housing differentiated from existing shelters using lightweight composite panels. To accomplish this, the structural performance of lightweight composite panels was validated, and an in-plane shear strength test was conducted according to the ASTM E72 criteria among the performance test methods for panels. As a result of the experiment, the maximum load for each specimen under an in-plane shear load was determined. All the experiments ended with the tear of the panel's skin section. The initial stiffness of the specimens was consistent with that predicted by the calculations. On the other hand, local crushing and tearing, as well as the characteristics of the panel, resulted in a decrease in stiffness and final failure. Specimens with an opening showed a difference in stiffness and strength from the basic experiment. The maximum load and the effective area were found to be proportional. Through this process, the allowable shear stress of the specimens was calculated and the average allowable shear stress was determined. The average ultimate shear stress of the lightweight composite panels was found to be $0.047N/mm^2$, which provides a criterion of judgement that could be used to expect the allowable load of lightweight composite panels.

국내에서의 지진과 같은 자연재해의 발생횟수가 증가하고 있다. 이에 따라 재해, 재난 환경에 적합한 임시거주공간 혹은 피난시설의 필요성이 증대되고 있다. 본 연구에서는 경량 복합패널을 이용하여 기존 피난시설과는 차별화된 구호주거를 제작하고자 하였다. 이를 위해 경량 복합패널에 대한 구조적 성능을 검증하고자 하였으며, 패널에 대한 성능 시험 방법 중 ASTM E72 기준에 따른 면내 전단 강도 실험을 진행하였다. 실험 결과, 각 실험체가 면내 하중을 받을 때의 최대하중을 알아내었다. 모든 실험체는 가력 부분의 패널이 찢어지면서 실험이 종료되었다. 실험체의 초기 강성은 계산을 통해 예측한 강성과 일치하였다. 하지만 패널의 특성인 국부적인 찌그러짐과 찢어짐으로 인해 강성저하와 최종파괴가 발생하였다. 개구부가 있는 실험체들은 개구부의 위치와 형태에 따라 기본 실험체와 강성과 강도에서 차이를 보였다. 또한 모든 실험 결과를 종합하여 패널이 받는 최대하중과 힘을 받는 면적이 비례한다는 것을 확인하였다. 이를 통해 실험체들의 극한전단응력을 계산하였으며, 평균 극한전단응력을 산정하였다. 경량 복합패널의 평균 극한전단응력은 $0.047N/mm^2$이며, 이 값을 통해 패널의 면적에 따른 허용하중을 합리적으로 예측할 수 있는 근거를 제시하였다.

Keywords

SHGSCZ_2019_v20n1_9_f0001.png 이미지

Fig. 1. Earthquake occurrence trend in Korea(1978-2017)[1]

SHGSCZ_2019_v20n1_9_f0002.png 이미지

Fig. 2. Panel configuration[3]

SHGSCZ_2019_v20n1_9_f0003.png 이미지

Fig. 3. Specimens section

SHGSCZ_2019_v20n1_9_f0004.png 이미지

Fig. 4. Floor plan of post-disaster refugees housing

SHGSCZ_2019_v20n1_9_f0005.png 이미지

Fig. 5. Elevation of post-disaster refugees housing

SHGSCZ_2019_v20n1_9_f0006.png 이미지

Fig. 6. Opening of post-disaster refugees housing

SHGSCZ_2019_v20n1_9_f0007.png 이미지

Fig. 7. Specimen setting

SHGSCZ_2019_v20n1_9_f0008.png 이미지

Fig. 8. Bottom joint detail

SHGSCZ_2019_v20n1_9_f0009.png 이미지

Fig. 9. In-plane shear strength setup

SHGSCZ_2019_v20n1_9_f0010.png 이미지

Fig. 10. LVDT installation location

SHGSCZ_2019_v20n1_9_f0011.png 이미지

Fig. 11. Load-displacement of specimen 1

SHGSCZ_2019_v20n1_9_f0012.png 이미지

Fig. 12. Load-displacement of specimen 2

SHGSCZ_2019_v20n1_9_f0013.png 이미지

Fig. 13. Load-displacement of specimen 3

SHGSCZ_2019_v20n1_9_f0014.png 이미지

Fig. 14. Load-displacement of specimen 4

SHGSCZ_2019_v20n1_9_f0015.png 이미지

Fig. 15. Load-displacement of specimen 5

SHGSCZ_2019_v20n1_9_f0016.png 이미지

Fig. 16. Load-displacement of specimen 6

SHGSCZ_2019_v20n1_9_f0017.png 이미지

Fig. 17. Damage pattern of specimens

SHGSCZ_2019_v20n1_9_f0018.png 이미지

Fig. 18. Comparisons of experiment 1, 2, 3

SHGSCZ_2019_v20n1_9_f0019.png 이미지

Fig. 19. Comparisons of experiment 1, 4, 5

SHGSCZ_2019_v20n1_9_f0020.png 이미지

Fig. 20. Comparisons of experiment 1, 6

Table 1. Material properties for structural components[3]

SHGSCZ_2019_v20n1_9_t0001.png 이미지

Table 2. Experimental variable

SHGSCZ_2019_v20n1_9_t0002.png 이미지

Table 3. Specimen stiffness

SHGSCZ_2019_v20n1_9_t0003.png 이미지

Table 4. Specimen stiffness

SHGSCZ_2019_v20n1_9_t0004.png 이미지

References

  1. Korea Meteorological Administration, Earthquakes Occurring in Korea, 2017, http://www.weather.go.kr/weather/earthquake_volcano/domestictrend.jsp, (accessed Oct. 2018)
  2. Ashland Inc., Technical Datasheet Ashland Specialty Ingredients ISOGRIPTM SP 3030D Adhesive, Ashland Inc. 2010.
  3. Axia Materials Co., Ltd., Structural Properties of LitePan(R) Panel, p.10-12, Axia Materials Co., Ltd., 2015.
  4. B. Yeh, T. Williamson, E. Keith, Development of Structural Insulated Panel Standards, ASCE, Structures Congress 2008, 2008.
  5. U.S. Department of Housing and Urban Development, Prescriptive Method for Structural Insulated Panels(SIPs) Used in wall systems in residential construction, pp. 1-40, Office of Policy Development and Research, 2007.
  6. H. Nah, H. Lee, C. Lee, S. Hwang, H. Jo, S. Choi, "Evaluation on Structural Performance of Structural Insulated Panels in Wall Application", J. Korean Soc. Adv. Comp. Strus., Vol. 3, No. 2, pp. 19-27, 2012. DOI: https://doi.org/10.11004/kosacs.2012.3.2.019
  7. H. Nah, H. Lee, S. Choi, "Performance Evaluation on Static Loading and Cyclic Loading for Structural Insulated Panels", J. Korean Soc. Adv. Comp. Strus., Vol. 4, No. 1, pp. 33-39, 2013. DOI: https://doi.org/10.11004/kosacs.2013.4.1.033
  8. Yu-Ra. Choi, Mi-Kyung. Kim, "Developing Planning Guidelines for Temporary Shelters for Disaster Victims Bases on Habitability : An Experts Survey", Crisisonomy, Vol. 14, No. 2, pp. 19-32, 2018. DOI: https://doi.org/10.14251/crisisonomy.2018.14.2.19
  9. Kyeong-Hui. Kim, Seung-Yeon. Kim, Ye-Seol. Han, Mi-Kyung. Kim, "Actual Status and Improvement of Temporary Shelter for Disaster Victims Due to the Earthquake In Pohang-Focusing on the Field Survey of Pohang Hunghae Indoor Gymnasium", Journal of the Korean Institute of Interior Design, Vol. 20, No. 1, pp. 208-211, 2018.
  10. Hee-Beom. Park, Jong-Sup. Park, Jae-Yoon. Kang, Woo-Tai. Jung, "An Experimental Study on the Behavior of Real Size Curved FRP Panel Using Composite Materials", J. Korean Soc. Adv. Comp. Strus., Vol. 9, No. 2, pp. 43-49, 2018. DOI: https://doi.org/10.11004/kosacs.2018.9.2.043
  11. Su-min. Kang, Moon-young. Hwang, Sung-tae. Kim, Young-jun. Cho, Byung-yun. Lee, "Evaluation on Transverse Load Performance of Lightweight Composite Panels", Journal of the Korea Academia-Industrial, Vol. 19, No. 1, pp. 146-157, 2018.
  12. ASTM International, Test Methods of Conducting Strength Tests of Panels for Building Construction, ASTM E72, ASTM Books of Standards, 2017.
  13. Korea Agency for Technology and Standards, KS F 2273 Methods of performance test for building construction panels, pp.23-26, 2009.
  14. Industry university cooperation foundation of Chungbuk national university, A Basic Study on the Multi-Purpose Housing System with Light Weight Structure Type and Disaster Response, p.35-36, Chungbuk national university, 2017.