DOI QR코드

DOI QR Code

SOME CONVERGENCE RESULTS FOR GENERALIZED NONEXPANSIVE MAPPINGS IN CAT(0) SPACES

  • Received : 2018.03.12
  • Accepted : 2018.12.05
  • Published : 2019.01.31

Abstract

The aim of this paper is to study convergence behaviour of Thakur iteration scheme in CAT(0) spaces for generalized nonexpansive mappings. In process, several relevant results of the existing literature are generalized and improved.

Keywords

References

  1. M. Abbas, S. H. Khan, and M. Postolache, Existence and approximation results for SKC mappings in CAT(0) spaces, J. Inequal. Appl. 2014 (2014), 212, 10 pp. https://doi.org/10.1186/1029-242X-2014-10
  2. M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik 66 (2014), no. 2, 223-234.
  3. R. P. Agarwal, D. O'Regan, and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (2007), no. 1, 61-79.
  4. M. Basarur and A. Sahin, On the strong and ${\Delta}$-convergence of S-iteration process for generalized nonexpansive mappings on CAT(0) space, Thai J. Math. 12 (2014), no. 3, 549-559.
  5. M. Basarur and A. Sahin, A new-three step iteration for generalized nonexpansive mappings in a CAT(0) space, AIP Conf. Proc. 1611, 310, 2014.
  6. M. R. Bridson and A. Hafliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999.
  7. K. S. Brown, Buildings, Springer-Verlag, New York, 1989.
  8. D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001.
  9. S. Dhompongsa, W. Inthakon, and A. Kaewkhao, Edelstein's method and fixed point theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 350 (2009), no. 1, 12-17. https://doi.org/10.1016/j.jmaa.2008.08.045
  10. S. Dhompongsa, W. A. Kirk, and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. 65 (2006), no. 4, 762-772. https://doi.org/10.1016/j.na.2005.09.044
  11. S. Dhompongsa and B. Panyanak, On ${\Delta}$-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), no. 10, 2572-2579. https://doi.org/10.1016/j.camwa.2008.05.036
  12. M. Eslamian and A. Abkar, One-step iterative process for a finite family of multivalued mappings, Math. Comput. Modelling 54 (2011), no. 1-2, 105-111. https://doi.org/10.1016/j.mcm.2011.01.040
  13. J. Garcia-Falset, E. Llorens-Fuster, and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011), no. 1, 185-195. https://doi.org/10.1016/j.jmaa.2010.08.069
  14. K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, 83, Marcel Dekker, Inc., New York, 1984.
  15. M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, translated from the French by Sean Michael Bates, Progress in Mathematics, 152, Birkhauser Boston, Inc., Boston, MA, 1999.
  16. B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  17. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
  18. S. H. Khan and M. Abbas, Strong and ${\Delta}$-convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl. 61 (2011), no. 1, 109-116. https://doi.org/10.1016/j.camwa.2010.10.037
  19. S. H. Khan, D. Agbebaku, and M. Abbas, Three step iteration process for two multivalued nonexpansive maps in hyperbolic spaces, J. Math. Ext. 10 (2016), no. 4, 87-109.
  20. S. H. Khan and H. Fukhar-ud-din, Convergence theorems for two finite families of some generalized nonexpansive mappings in hyperbolic spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 2, 734-743. https://doi.org/10.22436/jnsa.010.02.34
  21. W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), no. 12, 3689-3696. https://doi.org/10.1016/j.na.2007.04.011
  22. W. Laowang and B. Panyanak, Approximating fixed points of nonexpansive nonself mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID 367274, 11 pp.
  23. T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182 (1977). https://doi.org/10.1090/S0002-9939-1976-0423139-X
  24. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
  25. B. Nanjaras, B. Panyanak, and W. Phuengrattana, Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 1, 25-31. https://doi.org/10.1016/j.nahs.2009.07.003
  26. M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), no. 1, 217-229. https://doi.org/10.1006/jmaa.2000.7042
  27. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  28. A. Razani and H. Salahifard, Invariant approximation for CAT(0) spaces, Nonlinear Anal. 72 (2010), no. 5, 2421-2425. https://doi.org/10.1016/j.na.2009.10.039
  29. Ritika and S. H. Khan, Convergence of Picard-Mann hybrid iterative process for generalized nonexpansive mappings in CAT(0) spaces, Filomat 31 (2017), no. 11, 3531-3538. https://doi.org/10.2298/FIL1711531R
  30. Ritika and S. H. Khan, Convergence of RK-iterative process for generalized nonexpansive mappings in CAT(0) spaces, Asian-Eur. J. Math., 2018.
  31. H. F. Senter and W. G. Dotson, Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380. https://doi.org/10.1090/S0002-9939-1974-0346608-8
  32. T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), no. 2, 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023
  33. B. S. Thakur, D. Thakur, and M. Postolache, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat 30 (2016), no. 10, 2711-2720. https://doi.org/10.2298/FIL1610711T
  34. B. S. Thakur, D. Thakur, and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput. 275 (2016), 147-155. https://doi.org/10.1016/j.amc.2015.11.065