References
- M. Abbas, S. H. Khan, and M. Postolache, Existence and approximation results for SKC mappings in CAT(0) spaces, J. Inequal. Appl. 2014 (2014), 212, 10 pp. https://doi.org/10.1186/1029-242X-2014-10
- M. Abbas and T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik 66 (2014), no. 2, 223-234.
- R. P. Agarwal, D. O'Regan, and D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal. 8 (2007), no. 1, 61-79.
-
M. Basarur and A. Sahin, On the strong and
${\Delta}$ -convergence of S-iteration process for generalized nonexpansive mappings on CAT(0) space, Thai J. Math. 12 (2014), no. 3, 549-559. - M. Basarur and A. Sahin, A new-three step iteration for generalized nonexpansive mappings in a CAT(0) space, AIP Conf. Proc. 1611, 310, 2014.
- M. R. Bridson and A. Hafliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer-Verlag, Berlin, 1999.
- K. S. Brown, Buildings, Springer-Verlag, New York, 1989.
- D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI, 2001.
- S. Dhompongsa, W. Inthakon, and A. Kaewkhao, Edelstein's method and fixed point theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 350 (2009), no. 1, 12-17. https://doi.org/10.1016/j.jmaa.2008.08.045
- S. Dhompongsa, W. A. Kirk, and B. Sims, Fixed points of uniformly Lipschitzian mappings, Nonlinear Anal. 65 (2006), no. 4, 762-772. https://doi.org/10.1016/j.na.2005.09.044
-
S. Dhompongsa and B. Panyanak, On
${\Delta}$ -convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), no. 10, 2572-2579. https://doi.org/10.1016/j.camwa.2008.05.036 - M. Eslamian and A. Abkar, One-step iterative process for a finite family of multivalued mappings, Math. Comput. Modelling 54 (2011), no. 1-2, 105-111. https://doi.org/10.1016/j.mcm.2011.01.040
- J. Garcia-Falset, E. Llorens-Fuster, and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl. 375 (2011), no. 1, 185-195. https://doi.org/10.1016/j.jmaa.2010.08.069
- K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, 83, Marcel Dekker, Inc., New York, 1984.
- M. Gromov, Metric structures for Riemannian and non-Riemannian spaces, translated from the French by Sean Michael Bates, Progress in Mathematics, 152, Birkhauser Boston, Inc., Boston, MA, 1999.
- B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
- S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
-
S. H. Khan and M. Abbas, Strong and
${\Delta}$ -convergence of some iterative schemes in CAT(0) spaces, Comput. Math. Appl. 61 (2011), no. 1, 109-116. https://doi.org/10.1016/j.camwa.2010.10.037 - S. H. Khan, D. Agbebaku, and M. Abbas, Three step iteration process for two multivalued nonexpansive maps in hyperbolic spaces, J. Math. Ext. 10 (2016), no. 4, 87-109.
- S. H. Khan and H. Fukhar-ud-din, Convergence theorems for two finite families of some generalized nonexpansive mappings in hyperbolic spaces, J. Nonlinear Sci. Appl. 10 (2017), no. 2, 734-743. https://doi.org/10.22436/jnsa.010.02.34
- W. A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), no. 12, 3689-3696. https://doi.org/10.1016/j.na.2007.04.011
- W. Laowang and B. Panyanak, Approximating fixed points of nonexpansive nonself mappings in CAT(0) spaces, Fixed Point Theory Appl. 2010 (2010), Art. ID 367274, 11 pp.
- T. C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182 (1977). https://doi.org/10.1090/S0002-9939-1976-0423139-X
- W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- B. Nanjaras, B. Panyanak, and W. Phuengrattana, Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces, Nonlinear Anal. Hybrid Syst. 4 (2010), no. 1, 25-31. https://doi.org/10.1016/j.nahs.2009.07.003
- M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl. 251 (2000), no. 1, 217-229. https://doi.org/10.1006/jmaa.2000.7042
- Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
- A. Razani and H. Salahifard, Invariant approximation for CAT(0) spaces, Nonlinear Anal. 72 (2010), no. 5, 2421-2425. https://doi.org/10.1016/j.na.2009.10.039
- Ritika and S. H. Khan, Convergence of Picard-Mann hybrid iterative process for generalized nonexpansive mappings in CAT(0) spaces, Filomat 31 (2017), no. 11, 3531-3538. https://doi.org/10.2298/FIL1711531R
- Ritika and S. H. Khan, Convergence of RK-iterative process for generalized nonexpansive mappings in CAT(0) spaces, Asian-Eur. J. Math., 2018.
- H. F. Senter and W. G. Dotson, Jr., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380. https://doi.org/10.1090/S0002-9939-1974-0346608-8
- T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl. 340 (2008), no. 2, 1088-1095. https://doi.org/10.1016/j.jmaa.2007.09.023
- B. S. Thakur, D. Thakur, and M. Postolache, A new iteration scheme for approximating fixed points of nonexpansive mappings, Filomat 30 (2016), no. 10, 2711-2720. https://doi.org/10.2298/FIL1610711T
- B. S. Thakur, D. Thakur, and M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput. 275 (2016), 147-155. https://doi.org/10.1016/j.amc.2015.11.065