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SOME CONVERGENCE RESULTS FOR GENERALIZED

NONEXPANSIVE MAPPINGS IN CAT(0) SPACES

Chanchal Garodia and Izhar Uddin

Abstract. The aim of this paper is to study convergence behaviour of

Thakur iteration scheme in CAT(0) spaces for generalized nonexpansive
mappings. In process, several relevant results of the existing literature

are generalized and improved.

1. Introduction

Fixed point theory has been gaining much attention among the researchers as
it provides useful tools to solve many problems that have application in different
fields like engineering, economics, chemistry, game theory etc. Iteration process
plays a crucial role in finding fixed points of a nonlinear mapping. By now, there
exists an extensive literature on the iterative fixed points for various classes of
mappings. Mann [24], Ishikawa [17], Halpern [16], Noor [26], Agarwal et al.
[3] and Abbas and Nazir [2] are some of the well known and widely utilized
iteration processes.

In 2008, Suzuki [32] introduced a new class of mappings which is larger
than the class of nonexpansive mappings and named the defining condition as
Condition (C) which is also referred as generalized nonexpansive mapping.

Following this, numerous results have been obtained for the class of gener-
alized nonexpansive mappings in various spaces (e.g. [1,4,5,9,12,13,19,20,25,
28–30]).

Recently, Thakur et al. [33] introduced a new modified iteration process for
finding fixed point of nonexpansive mappings. Let C be a nonempty closed
convex subset of a uniformly convex Banach space X, then the sequence {xn}
is generated iteratively by x1 ∈ C and

(1.1)


zn = (1− γn)xn + γnTxn,

yn = (1− βn)zn + βnTzn,

xn+1 = (1− αn)Tzn + αnTyn, n ∈ N,
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where {αn}, {βn} and {γn} are real sequences in (0, 1). Further, they showed
that the new iteration process is faster than the above mentioned iteration
processes.

The purpose of this paper is to study the convergence of Thakur iteration
process (1.1) for generalized nonexpansive mappings in CAT(0) spaces thereby
extending the classes of mappings as well as classes of spaces.

2. Preliminaries and lemmas

We begin by recalling some known facts in the existing literature of CAT(0)
space.

In a metric space (X, d), a geodesic path joining x ∈ X and y ∈ X is a
map c from a closed interval [0, r] ⊂ R to X such that c(0) = x, c(r) = y
and d(c(t), c(s)) = |s − t| for all s, t ∈ [0, r]. In particular, the mapping c
is an isometry and d(x, y) = r. The image of geodesic path (joining x and y)
under c is called a geodesic segment joining x and y which is denoted by [x, y]
whenever such a segment exists uniquely. For any x, y ∈ X, we denote the
point z ∈ [x, y] by z = (1− α)x⊕ αy, where 0 ≤ α ≤ 1 if d(x, z) = αd(x, y)
and d(z, y) = (1−α)d(x, y). The space (X, d) is called a geodesic space if any
two points of X are joined by a geodesic, and X is said to be uniquely geodesic
if there is exactly one geodesic joining x and y for each x, y ∈ X. A subset
C of X is called convex if C contains every geodesic segment joining any two
points in C.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) consists
of three points of X (as the vertices of 4) and a geodesic segment between each
pair of points (as the edges of 4). A comparison triangle for 4(x1, x2, x3) in
(X, d) (denoted by4) is a triangle4(x1, x2, x3) := 4(x1, x2, x3) in Euclidean
plane R2 such that dR2(xi, xj) = d(xi, xj) for i, j ∈ {1, 2, 3}. A point
x ∈ [x1, x2] is said to be comparison point for x ∈ [x1, x2] if d(x1, x) = d(x1, x).
The comparison points on [x2, x3] and [x3, x1] are defined in same way.

A geodesic metric space X is called a CAT(0) space if all geodesic triangles
satisfy the following comparison axiom (CAT(0) inequality):

Let 4 be a geodesic triangle in X and let 4 be its comparison triangle in
R2. Then 4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4 and all
comparison points x, y ∈ 4,

d(x, y) ≤ dR2(x, y).

It is well known that any complete, simply connected Riemannian manifold
having nonpositive sectional curvature and the complex Hilbert ball with a
hyperbolic metric [14] is a CAT(0) space. Other examples include pre-Hilbert
spaces, R-trees [6] and Euclidean buildings [7]. For a thorough discussion of
these spaces and of the fundamental role they play in geometry, see Bridson
and Haefliger [6]. Also, one can refer Burago et al. [8] for more elementary in-
formation and Gromov [15] for comparatively deeper study about these spaces.
It is worth mentioning that the results in CAT(0) space can be applied to any
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CAT(k) space with k ≤ 0, since any CAT(k) space is a CAT(k′) space for every
k′ ≥ k.

Next, we state the following lemmas to be used later on.

Lemma 2.1 ([11]). Let (X, d) be a CAT(0) space. For x, y ∈ X and t ∈ [0, 1],
there exists a unique z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y).

We use the notation (1− t)x⊕ ty for the unique point z of the above lemma.

Lemma 2.2 ([11]). For x, y, z ∈ X and t ∈ [0, 1] we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

Now, we collect some basic geometric properties, which are instrumental
throughout the discussions.

Let {xn} be a bounded sequence in a complete CAT(0) space X. For x ∈ X
write:

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X},
and the asymptotic center A({xn}) of {xn} is defined as:

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.
In 2006, Dhompongsa, Kirk and Sims proved that A({xn}) consists of exactly
one point if X is a CAT(0) space (Proposition 5 of [10]).

In 2008, Kirk and Panyanak [21] obtained an analogue result of weak con-
vergence in Banach space and restriction of Lim’s [23] concept of convergence
to CAT(0) spaces which is known as ∆-convergence.

Definition 2.1 ([21]). A sequence {xn} in X is said to be ∆-convergent to
x ∈ X if x is the unique asymptotic center of un for every subsequence {un}
of {xn}. In this case, we write ∆-limn xn = x and read as x is the ∆-limit of
{xn}.
Definition 2.2 ([27]). A Banach space X is said to satisfy Opial’s condition
if for any sequence {xn} in X with xn ⇀ x (⇀ denotes weak convergence)
implies that lim sup

n→∞
‖xn − x‖ < lim sup

n→∞
‖xn − y‖ for all y ∈ X with y 6= x.

From the definition of ∆-convergence it can easily be seen that every CAT(0)
space satisfies Opial’s property.

Now, we list few results which will be frequently used throughout the text.

Lemma 2.3. The following assertions hold in a CAT(0) space:
(i) [21] Every bounded sequence in a complete CAT(0) space admits a ∆-

convergent subsequence.
(ii) [11] If C is a closed convex subset of a complete CAT(0) space X and if

{xn} is a bounded sequence in C, then the asymptotic center of {xn} is in C.



256 C. GARODIA AND I. UDDIN

Lemma 2.4 ([11]). If {xn} is a bounded sequence in a complete CAT(0) space
with A({xn}) = {x}, {un} is a subsequence of {xn} with A({un}) = {u} and
the sequence {d(xn, u)} converges, then x = u.

The following lemma is a consequence of Lemma 2.9 of [22] which will be
used to prove our main result.

Lemma 2.5 ([22]). Let (X, d) be a complete CAT(0) space and x ∈ X. Suppose
{tn} is a sequence in [b, c] for some b, c ∈ (0, 1) and {un}, {vn} are sequences
in X such that lim sup

n→∞
d(un, x) ≤ r, lim sup

n→∞
d(vn, x) ≤ r and lim

n→∞
d(tnvn⊕(1−

tn)un, x) = r hold for some r ≥ 0, then lim
n→∞

d(un, vn) = 0.

Definition 2.3 ([10]). A mapping T defined on a subset K of a Banach space
X is said to satisfy Condition (C) if

1

2
d(x, Tx) ≤ d(x, y)⇒ d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ K.

Note that every nonexpansive mapping satisfies Condition (C), but the con-
verse is not true (see [18]).

Next, we state the following result for generalized nonexpansive mappings
in the setting of CAT(0) space which is very useful to prove our main results.

Lemma 2.6 ([25]). Let C be a subset of a CAT(0) space and T : C → C be a
generalized nonexpansive mapping. Then, for all x, y ∈ C the following holds:

d(x, Ty) ≤ 3d(x, Tx) + d(x, y).

We now modify (1.1) in a CAT(0) space as follows:
Let C be a nonempty closed convex subset of a complete CAT(0) space X

and T : C → C be a mapping. Let x1 ∈ C be arbitrary, then the sequence
{xn} is generated iteratively by:

(2.1)


zn = (1− γn)xn ⊕ γnTxn,
yn = (1− βn)zn ⊕ βnTzn,
xn+1 = (1− αn)Tzn ⊕ αnTyn, n ∈ N,

where {αn}, {βn} and {γn} are real sequences in (0, 1).
In this paper, we prove ∆ convergence and strong convergence of this it-

eration process. Our results generalize and extend the corresponding relevant
results of Agarwal et al. [3], Khan and Abbas [18] and Thakur et al. [33].

3. Some ∆-convergence and strong convergence theorems

Let us begin with the following important lemma.
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Lemma 3.1. Let T : C → C be a generalized nonexpansive mapping defined
on a nonempty closed convex subset C of a complete CAT(0) space X such that
F (T ) 6= φ. If {xn} is a sequence defined by (2.1), then lim

n→∞
d(xn, p) exists for

all p ∈ F (T ).

Proof. For any p ∈ F (T ), we get

1

2
d(p, Tp) = 0 ≤ d(p, xn).

Since T is a generalized nonexpansive mapping, we obtain d(Txn, Tp) ≤
d(xn, p). Similarly, we have d(Tyn, Tp) ≤ d(yn, p) and d(Tzn, Tp) ≤ d(zn, p).

Now, using Lemma 2.2, we have

d(zn, p) = d((1− γn)xn ⊕ γnTxn, p)
≤ (1− γn)d(xn, p) + γnd(Txn, p)

= (1− γn)d(xn, p) + γnd(Txn, Tp)(3.1)

≤ (1− γn)d(xn, p) + γnd(xn, p)

= d(xn, p)

and

d(yn, p) = d((1− βn)zn ⊕ βnTzn, p)
≤ (1− βn)d(zn, p) + βnd(Tzn, p)

= (1− βn)d(zn, p) + βnd(Tzn, Tp)(3.2)

≤ (1− βn)d(zn, p) + βnd(zn, p)

≤ (1− γn)d(xn, p) + γnd(xn, p)

= d(xn, p).

Using (3.1) and (3.2), we get

d(xn+1, p) = d((1− αn)Tzn ⊕ αnTyn, p)

≤ (1− αn)d(Tzn, p) + αnd(Tyn, p)

= (1− αn)d(Tzn, Tp) + αnd(Tyn, Tp)

≤ (1− αn)d(zn, p) + αnd(yn, p)

≤ (1− αn)d(xn, p) + αnd(xn, p)

= d(xn, p).

Thus, {d(xn, p)} is a non-increasing sequence of reals which is bounded below by
zero and hence convergent. Therefore, lim

n→∞
d(xn, p) exists for all p ∈ F (T ). �

Lemma 3.2. Let T : C → C be a generalized nonexpansive mapping defined
on a nonempty closed convex subset C of a complete CAT(0) space X such that
F (T ) 6= φ. If {xn} is a sequence defined by (2.1), then lim

n→∞
d(Txn, xn) = 0.
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Proof. By Lemma 3.1, it follows that lim
n→∞

d(xn, p) exists, say lim
n→∞

d(xn, p) = c.

From (3.1) and (3.2) we have

(3.3) lim sup
n→∞

d(yn, p) ≤ c

and

(3.4) lim sup
n→∞

d(zn, p) ≤ c.

Since T is a generalized nonexpansive mapping, we get

d(Txn, p) ≤ d(xn, p), d(Tyn, p) ≤ d(yn, p) and d(Tzn, p) ≤ d(zn, p)

which implies that

(3.5) lim sup
n→∞

d(Txn, p) ≤ c,

(3.6) lim sup
n→∞

d(Tyn, p) ≤ c,

and

(3.7) lim sup
n→∞

d(Tzn, p) ≤ c.

Now,

c = lim
n→∞

d(xn, p)

= lim
n→∞

d(xn+1, p)

= d((1− αn)Tzn ⊕ αnTyn, p).

So, by using Lemma 2.5, (3.6) and (3.7), we get

(3.8) lim
n→∞

d(Tzn, T yn) = 0.

Now,

d(xn+1, p) = d((1− αn)Tzn ⊕ αnTyn, p)

≤ (1− αn)d(Tzn, p) + αnd(Tyn, p)

≤ (1− αn)d(Tzn, p) + αnd(Tyn, T zn) + αnd(Tzn, p)

= d(Tzn, p) + αnd(Tyn, T zn)

which on using (3.8) and taking infimum limit both sides yields that

(3.9) c ≤ lim inf
n→∞

d(Tzn, p).

Owing to (3.7) and (3.9), we get

lim
n→∞

d(Tzn, p) = c.

Also, we have

d(Tzn, p) ≤ d(Tzn, Tyn) + d(Tyn, p)

≤ d(Tzn, Tyn) + d(yn, p)
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which gives

(3.10) c ≤ lim inf
n→∞

d(yn, p).

Now, by using (3.3) and (3.10), we obtain

lim
n→∞

d(yn, p) = c.

In view of Lemma 2.5, (3.4) and (3.7), we obtain

lim
n→∞

d(Tzn, zn) = 0.

Now, consider

d(yn, p) ≤ (1− βn)d(zn, p) + βnd(Tzn, p)

≤ (1− βn)d(zn, p) + βn[d(Tzn, zn) + d(zn, p)]

= d(zn, p) + βnd(Tzn, zn)

so that

c ≤ lim sup
n→∞

d(zn, p)

and hence using (3.4), we get

c = lim
n→∞

d(zn, p)

= lim
n→∞

d((1− γn)xn ⊕ γnTxn, p).

Then from Lemma 2.5 and (3.5), we obtain

lim
n→∞

d(Txn, xn) = 0,

which proves the result. �

Theorem 3.1. Let T : C → C be a generalized nonexpansive mapping defined
on a nonempty convex closed subset C of a complete CAT(0) space X such that
F (T ) 6= φ. If {xn} is a sequence defined by iteration process (2.1), then {xn}
∆-converges to a fixed point of T

Proof. From Lemmas 3.1 and 3.2, we have lim
n→∞

d(xn, p) exists for each p ∈
F (T ) so that the sequence {xn} is bounded and lim

n→∞
d(xn, Txn) = 0.

Let Wω({xn}) =: ∪A({un}), where union is taken over all subsequences
{un} of {xn}. In order to show the ∆-convergence of {xn} to a fixed point of
T , firstly we will prove Wω({xn}) ⊂ F (T ) and thereafter argue that Wω({xn})
is a singleton set. To show Wω({xn}) ⊂ F (T ), let u ∈ Wω({xn}). Then, there
exists a subsequence {un} of {xn} such that A({un}) = u. By Lemma 2.3, there
exists a subsequence {vn} of {un} such that ∆-lim

n
vn = v and v ∈ C. Since

lim
n→∞

d(Txn, xn) = 0 and {vn} is a subsequence of {xn}, lim
n→∞

d(vn, T vn) = 0.

Since T is a generalized nonexpansive mapping, by Lemma 2.6, we have

d(vn, T v) ≤ 3d(vn, T vn) + d(vn, v).
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By taking limsup of both the side, we get

lim sup
n→∞

d(vn, T v) ≤ lim sup
n→∞

{3d(vn, T vn) + d(vn, v)}

≤ lim sup
n→∞

d(vn, v).

As ∆-lim
n
vn = v, by Opial property, we have

lim sup
n→∞

d(vn, v) ≤ lim sup
n→∞

d(vn, T v).

Hence Tv = v, i.e., v ∈ F (T ).
Now, by Lemma 3.1, lim

n→∞
d(xn, v) exists. By Lemma 2.5, we obtain u = v

which shows that Wω({xn}) ⊂ F (T ). Now it is left to show that Wω({xn})
consists of single element only. For this, let {un} be a subsequence of {xn}.
Again, by using Lemma 2.3, we can find a subsequence {vn} of {un} such that
∆ − lim

n
vn = v and v ∈ C. Let A({un}) = u and A({xn}) = x. We have

already seen that u = v and v ∈ F (T ). So, it is enough to show that v = x.
Since v ∈ F (T ), by Lemma 3.1, {d(xn, v)} is convergent. Again, by Lemma
2.4, we have v = x which proves that Wω({xn}) is a singleton set. Hence the
conclusion follows. �

As a special case of Theorem 3.1, we obtain the following result which is an
analogue of Theorem 4.3 of Thakur et al. [33].

Corollary 3.1. Let T : C → C be a nonexpansive mapping defined on a
nonempty closed convex subset C of a complete CAT(0) space X with F (T ) 6= φ.
If {xn} is a sequence defined by iteration process (2.1), then {xn} ∆-converges
to a fixed point of T .

Now, we prove a strong convergence theorem under some suitable conditions.

Theorem 3.2. Let T : C → C be a generalized nonexpansive mapping defined
on a nonempty closed convex subset C of a complete CAT(0) space X such that
F (T ) 6= φ. If {xn} is a sequence defined by (2.1), then {xn} converges to a
fixed point of T if and only if lim inf

n→∞
d(xn, F (T )) = 0.

Proof. If the sequence {xn} converges to a point p ∈ F (T ), then

lim inf
n→∞

d(xn, p) = 0

so that
lim inf
n→∞

d(xn, F (T )) = 0.

For converse part, assume that lim inf
n→∞

d(xn, F (T )) = 0. From Lemma 3.1, we

have
d(xn+1, p) ≤ d(xn, p) for any p ∈ F (T )

so we have
d(xn+1, F (T )) ≤ d(xn, F (T )).
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Thus, d(xn, F (T )) forms a decreasing sequence which is bounded below by zero
as well, so we get that lim

n→∞
d(xn, F (T )) exists. As, lim inf

n→∞
d(xn, F (T )) = 0 so

lim
n→∞

d(xn, F (T )) = 0.

Now, we prove that {xn} is a Cauchy sequence in C. Let ε >0 be arbitrarily
chosen. Since lim inf

n→∞
d(xn, F (T )) = 0, there exists n0 such that for all n ≥ n0,

we have

d(xn, F (T )) <
ε

4
.

In particular,

inf{d(xn0 , p) : p ∈ F (T )} < ε

4
,

so there must exist a p ∈ F (T ) such that

d(xn0 , p) <
ε

2
.

Thus, for m,n ≥ n0, we have

d(xn+m, xn) ≤ d(xn+m, p) + d(xn, p)

< 2d(xn0
, p)

< 2
ε

2
= ε

which shows that {xn} is a Cauchy sequence. Since C is a closed subset of
a complete metric space X, C itself is a complete metric space and therefore
{xn} must converge to some x in C. As lim

n→∞
d(xn, F (T )) = 0 which gives

d(x, F (T )) = 0. In view of Lemma 2.7, F (T ) is closed so x ∈ F (T ). �

The following corollary of Theorem 3.2 provides an analogue of Theorem 4.4
of Thakur et al. [33].

Corollary 3.2. Let T : C → C be a nonexpansive mapping defined on a
nonempty closed convex subset C of a complete CAT(0) space X such that
F (T ) 6= φ. If {xn} is a sequence defined by (2.1), then {xn} converges to a
fixed point of T if and only if lim inf

n→∞
d(xn, F (T )) = 0.

We recall (see [31]), mapping T : C → C is said to satisfy Condition (A) if
there exists a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and
f(r) > 0 for all r ∈ (0,∞) such that d(x, Tx) ≥ f(d(x, F (T ))) for all x ∈ C.

Theorem 3.3. Let T : C → C be a generalized nonexpansive mapping defined
on a nonempty closed convex subset C of a complete CAT(0) space X with
F (T ) 6= φ. If {xn} is a sequence defined by (2.1) and T satisfies Condition
(A), then {xn} converges strongly to a fixed point of T .

Proof. By Lemma 3.1, lim
n→∞

d(xn, p) exists and d(xn+1, p) ≤ d(xn, p) for all

p ∈ F (T ).
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We get

inf
p∈F (T )

d(xn+1, p) ≤ inf
p∈F (T )

d(xn, p),

which yields

d(xn+1, F (T )) ≤ d(xn, F (T )).

This shows that the sequence {d(xn, F (T ))} is non-increasing and bounded
below, so lim

n→∞
d(xn, F (T )) exists.

Also, by Lemma 3.2 we have lim
n→∞

d(xn, Txn) = 0.

It follows from Condition (A) that

lim
n→∞

f(d(xn, F (T ))) ≤ lim
n→∞

d(xn, Txn) = 0,

so that lim
n→∞

f(d(xn, F (T ))) = 0.

Since f is a non decreasing function satisfying f(0) = 0 and f(r) > 0 for all
r ∈ (0,∞), lim

n→∞
d(xn, F (T )) = 0.

By Theorem 3.2, the sequence {xn} converges strongly to a point of F (T ).
�

Note that Theorem 3.3 sets an analogue of Theorem 4.5 of Thakur et al. [33].

Corollary 3.3. Let T : C → C be a nonexpansive mapping defined on a
nonempty closed convex subset C of a complete CAT(0) space X such that
F (T ) 6= φ. If {xn} is a sequence defined by (2.1) and T satisfies Condition
(A), then {xn} converges strongly to a fixed point of T .

Now, we present a numerical example to illustrate the convergence of itera-
tion (2.1) for a mapping which satisfies Condition (C) but is not a nonexpansive
mapping.

Example. Define a mapping T : [0, 1]→ [0, 1] by

Tx =


1− x, x ∈ [0,

1

2
),

x+ 4

5
, x ∈ [

1

2
, 1].

It was shown in [34] that T is not a nonexpansive mapping but it satisfies
Condition (C).

Let αn =
√

n+1
5n+1 , βn = 1√

2n+9
and γn = 2n

7n+9 . Then, we obtain the

following table of the iteration values for three different initial values:
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Step When x1 = 0.1 When x1 = 0.5 When x1 = 0.9
1 0.1 0.5 0.9
2 0.862281939962329 0.92253359122881 0.984506718245762
3 0.979036062576615 0.988207785199346 0.997641557039869
4 0.996841803065564 0.99822351422438 0.999644702844876
5 0.999527074385491 0.999733979341839 0.999946795868368
6 0.99992943516311 0.999960307279249 0.99999206145585
7 0.99998949397059 0.999994090358457 0.999998818071692
8 0.999998437867589 0.999999121300519 0.999999824260104
9 0.999999767906008 0.999999869447129 0.999999973889426
10 0.999999965530672 0.999999980611003 0.999999996122201
11 0.999999994881657 0.999999997120932 0.999999999424187
12 0.99999999923998 0.999999999572489 0.999999999914498
13 0.999999999887132 0.999999999936512 0.999999999987302
14 0.999999999983235 0.99999999999057 0.999999999998114
15 0.999999999997509 0.999999999998599 0.99999999999972
16 0.99999999999963 0.999999999999792 0.999999999999958
17 0.999999999999945 0.999999999999969 0.999999999999994
18 0.999999999999992 0.999999999999996 0.999999999999999
19 0.999999999999999 0.999999999999999 1.000000000000000
20 1.000000000000000 1.000000000000000 1.000000000000000

Next, the following graph shows the convergence behaviour of iteration (2.1)
for the above example.
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