DOI QR코드

DOI QR Code

Protective effects of kaempferol, quercetin, and its glycosides on amyloid beta-induced neurotoxicity in C6 glial cell

Kaempferol, quercetin 및 그 배당체의 amyloid beta 유도 신경독성에 대한 C6 신경교세포 보호 효과

  • Kim, Ji Hyun (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University) ;
  • Kim, Hyun Young (Department of Food Science, Gyeongnam National University of Science and Technology) ;
  • Cho, Eun Ju (Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University)
  • Received : 2019.09.23
  • Accepted : 2019.09.30
  • Published : 2019.12.31

Abstract

Alzheimer's disease (AD) is a common neurodegenerative disease. Oxidative stress by amyloid beta peptide (Aβ) of neuronal cell is the most cause of AD. In the present study, protective effects of several flavonoids such as kaempferol (K), kaempferol-3-O-glucoside (KG), quercetin (Q) and quercetin-3-β-ᴅ-glucoside (QG) from Aβ25-35 were investigated using C6 glial cell. Treatment of Aβ25-35 to C6 glial cell showed decrease of cell viability, while treatment of flavonoids such as Q and QG increased cell viability. In addition, treatment of flavonoids declined reactive oxygen species (ROS) production compared with Aβ25-35-induced control. The ROS production was increased by treatment of Aβ25-35 to 133.39%, while KG and QG at concentration of 1 μM decreased ROS production to 107.44 and 113.10%, respectively. To study mechanisms of protective effect of these flavonoids against Aβ25-35, the protein expression related to inflammation under Aβ25-35-induced C6 glial cell was investigated. The results showed that C6 glial cell under Aβ25-35-induced oxidative stress up-regulated inflammation-related protein expressions. However, treatment of flavonoids led to reduction of protein expression such as inducible nitric oxide synthase, cyclooxygenase-2 and interleukin-1β. Especially, treatment of KG and QG decreased more effectively inflammation-related protein expression than its aglycones, K and Q. Therefore, the present results indicated that K, Q and its glycosides attenuated Aβ25-35-induced neuronal oxidative stress and inflammation.

알츠하이머 질환(Alzheimer's disease)은 대표적인 신경퇴행성 질환이며, 뇌 내 amyloid beta (Aβ) 축적에 의한 산화적 스트레스 및 염증반응은 대표적인 AD의 원인으로 알려져 있다. 본 연구에서는 kaempferol (K), kaempferol-3-O-glucoside (KG), quercetin (Q) 및 quercetin-3-β-ᴅ-glucoside (QG)와 같은 4가지 flavonoids의 C6 신경교세포에서 Aβ로 인한 신경독성으로부터의 보호 효능을 살펴보고자 하였다. C6 신경교세포에 Aβ를 처리하였을 때 세포 생존율이 감소한 반면, 4가지 flavonoids 중에서 Q와 QG의 처리 시 세포 생존율 증가를 통해 신경교세포 보호 효과를 확인하였다. 또한, Aβ를 처리한 control군의 경우 reactive oxygen species (ROS) 생성을 유도한 반면, flavonoids의 처리 시 ROS 생성이 감소하였다. 특히 Aβ를 처리한 control군은 133.39%의 ROS 생성을 나타내었으며, 1 μM의 KG와 QG를 각각 처리시 107.44, 113.10%의 수치를 나타내어 ROS 생성 감소를 확인하였다. Flavonoids의 Aβ에 대한 신경교세포 보호 기전을 확인하기 위해 염증 관련 단백질 발현을 측정하였다. Aβ로 신경독성이 유도된 control군은 염증 관련 단백질 발현이 증가하였다. 그러나, flavonoids를 처리한 군의 경우 염증 매개 인자인 inducible nitric oxide synthase, cyclooxygenase-2 and interleukin-1β의 발현 감소를 확인하였다. 특히, KG와 QG를 처리한 군은 aglycone 형태인 K와 Q를 처리한 군에 비해 효과적으로 염증 매개 인자 발현을 감소시켰다. 본 연구는 flavonoids의 일종인 K, Q와 그 배당체인 KG, QG의 Aβ로 신경독성이 유도된 신경교세포에서 산화적 스트레스 및 염증반응 조절을 통한 보호 효과를 나타냄을 알 수 있었으며, 이들 생리활성성분은 AD 예방 및 치료 소재로써의 가능성이 있을 것으로 사료된다.

Keywords

References

  1. Lane CA, Hardy J, Schott JM (2018) Alzheimer's disease. Eur J Neurol 25: 59-70 https://doi.org/10.1111/ene.13439
  2. Hardy JA, Higgins GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256: 184-185 https://doi.org/10.1126/science.1566067
  3. O'Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci 34: 185-204 https://doi.org/10.1146/annurev-neuro-061010-113613
  4. Tonnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer's disease. J Alzheimers Dis 57: 1105-1121 https://doi.org/10.3233/JAD-161088
  5. Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39: 73-82 https://doi.org/10.1080/01616412.2016.1251711
  6. Harkany T, Abraham I, Konya C, Nyakas C, Zarandi M, Penke B, Luiten PG (2000) Mechanisms of beta-amyloid neurotoxicity: perspectives of pharmacotherapy. Rev Neurosci 11: 329-382
  7. Cai Z, Zhao B, Ratka A (2011) Oxidative stress and a-amyloid protein in Alzheimer's disease. Neuromolecular Med 13: 223-250 https://doi.org/10.1007/s12017-011-8155-9
  8. Cai Z, Hussain MD, Yan LJ (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 124: 307-321 https://doi.org/10.3109/00207454.2013.833510
  9. Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A (2017) Neuroinflammation in Alzheimer's Disease: The preventive and therapeutic potential of polyphenolic nutraceuticals. Adv Protein Chem Struct Biol 108: 33-57 https://doi.org/10.1016/bs.apcsb.2017.02.001
  10. Esposito E, Cuzzocrea S (2010) New therapeutic strategy for Parkinson's and Alzheimer's disease. Curr Med Chem 17: 2764-2774 https://doi.org/10.2174/092986710791859324
  11. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79: 727-747 https://doi.org/10.1093/ajcn/79.5.727
  12. Jaeger BN, Parylak SL, Gage FH (2018) Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol Aspects Med 61: 50-62 https://doi.org/10.1016/j.mam.2017.11.003
  13. Xiao J (2017) Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev Food Sci Nutr 57: 1874-1905
  14. Xiao J, Capanoglu E, Jassbi AR, Miron A (2016) Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr 56: 29-45
  15. Kren V, Martinkova L (2001) Glycosides in medicine: "The role of glycosidic residue in biological activity". Curr Med Chem 8: 1303-1328 https://doi.org/10.2174/0929867013372193
  16. Habtemariam S, Belai A (2018) Natural therapies of the inflammatory bowel disease: The case of rutin and its aglycone, quercetin. Mini Rev Med Chem 18: 234-243
  17. da Silva AB, Cerqueira Coelho PL, das Neves Oliveira M, Oliveira JL, Oliveira Amparo JA, da Silva KC, Soares JRP, Pitanga BPS, Dos Santos Souza C, de Faria Lopes GP, da Silva VDA, de Fatima Dias Costa M, Junier MP, Chneiweiss H, Moura-Neto V, Costa SL (2019) The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain Behav Immun S0889-1591: 30042-X (in press)
  18. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
  19. Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27: 612-616 https://doi.org/10.1016/S0891-5849(99)00107-0
  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 https://doi.org/10.1006/abio.1976.9999
  21. Garcia-Alloza M, Ferrara BJ, Dodwell SA, Hickey GA, Hyman BT, Bacskai BJ (2007) A limited role for microglia in antibody mediated plaque clearance in APP mice. Neurobiol Di 28: 286-292 https://doi.org/10.1016/j.nbd.2007.07.019
  22. Zhao X, Yuan L, Yu H, Xi Y, Ma W, Zhou X, Ding J, Xiao R (2014) Genistein inhibited amyloid-${\beta}$ induced inflammatory damage in C6 glial cells. Arch Med Res 45: 152-157 https://doi.org/10.1016/j.arcmed.2013.12.008
  23. Bing L, Wu J, Zhang J, Chen Y, Hong Z, Zu H (2015) DHT inhibits the $A{\beta}25$-35-induced apoptosis by regulation of seladin-1, survivin, XIAP, bax, and bcl-xl expression through a rapid PI3-K/Akt signaling in C6 glial cell lines. Neurochem Res 40: 41-48 https://doi.org/10.1007/s11064-014-1463-3
  24. Maruyama W, Shaomoto-Nagai M, Kato Y, Hisaka S, Osawa T, Naoi M (2014) Role of lipid peroxide in the neurodegenerative disorders. Subcell Biochem 77: 127-136 https://doi.org/10.1007/978-94-007-7920-4_11
  25. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer's disease. Brain Pathol 9: 133-146 https://doi.org/10.1111/j.1750-3639.1999.tb00215.x
  26. Ayasolla K, Khan M, Singh AK, Singh I (2004) Inflammatory mediator and beta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic Biol Med 37: 325-338 https://doi.org/10.1016/j.freeradbiomed.2004.04.007
  27. Park SE, Sapkota K, Kim S, Kim H, Kim SJ (2011) Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol 164: 1008-1025 https://doi.org/10.1111/j.1476-5381.2011.01389.x
  28. Kheiri G, Dolatshahi M, Rahmani F, Rezaei N (2018) Role of p38/MAPKs in Alzheimer's disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci 30: 9-30 https://doi.org/10.1515/revneuro-2018-0008
  29. Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18: 2195-2224 https://doi.org/10.1101/gad.1228704
  30. Sun GY, Chen Z, Jasmer KJ, Chuang DY, Gu Z, Hannink M, Simonyi A (2015) Quercetin attenuates inflammatory responses in BV-2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS One 10: e0141509 https://doi.org/10.1371/journal.pone.0141509