References
- Lane CA, Hardy J, Schott JM (2018) Alzheimer's disease. Eur J Neurol 25: 59-70 https://doi.org/10.1111/ene.13439
- Hardy JA, Higgins GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256: 184-185 https://doi.org/10.1126/science.1566067
- O'Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer's disease. Annu Rev Neurosci 34: 185-204 https://doi.org/10.1146/annurev-neuro-061010-113613
- Tonnies E, Trushina E (2017) Oxidative stress, synaptic dysfunction, and Alzheimer's disease. J Alzheimers Dis 57: 1105-1121 https://doi.org/10.3233/JAD-161088
- Islam MT (2017) Oxidative stress and mitochondrial dysfunction-linked neurodegenerative disorders. Neurol Res 39: 73-82 https://doi.org/10.1080/01616412.2016.1251711
- Harkany T, Abraham I, Konya C, Nyakas C, Zarandi M, Penke B, Luiten PG (2000) Mechanisms of beta-amyloid neurotoxicity: perspectives of pharmacotherapy. Rev Neurosci 11: 329-382
- Cai Z, Zhao B, Ratka A (2011) Oxidative stress and a-amyloid protein in Alzheimer's disease. Neuromolecular Med 13: 223-250 https://doi.org/10.1007/s12017-011-8155-9
- Cai Z, Hussain MD, Yan LJ (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 124: 307-321 https://doi.org/10.3109/00207454.2013.833510
- Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A (2017) Neuroinflammation in Alzheimer's Disease: The preventive and therapeutic potential of polyphenolic nutraceuticals. Adv Protein Chem Struct Biol 108: 33-57 https://doi.org/10.1016/bs.apcsb.2017.02.001
- Esposito E, Cuzzocrea S (2010) New therapeutic strategy for Parkinson's and Alzheimer's disease. Curr Med Chem 17: 2764-2774 https://doi.org/10.2174/092986710791859324
- Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79: 727-747 https://doi.org/10.1093/ajcn/79.5.727
- Jaeger BN, Parylak SL, Gage FH (2018) Mechanisms of dietary flavonoid action in neuronal function and neuroinflammation. Mol Aspects Med 61: 50-62 https://doi.org/10.1016/j.mam.2017.11.003
- Xiao J (2017) Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev Food Sci Nutr 57: 1874-1905
- Xiao J, Capanoglu E, Jassbi AR, Miron A (2016) Advance on the flavonoid C-glycosides and health benefits. Crit Rev Food Sci Nutr 56: 29-45
- Kren V, Martinkova L (2001) Glycosides in medicine: "The role of glycosidic residue in biological activity". Curr Med Chem 8: 1303-1328 https://doi.org/10.2174/0929867013372193
- Habtemariam S, Belai A (2018) Natural therapies of the inflammatory bowel disease: The case of rutin and its aglycone, quercetin. Mini Rev Med Chem 18: 234-243
- da Silva AB, Cerqueira Coelho PL, das Neves Oliveira M, Oliveira JL, Oliveira Amparo JA, da Silva KC, Soares JRP, Pitanga BPS, Dos Santos Souza C, de Faria Lopes GP, da Silva VDA, de Fatima Dias Costa M, Junier MP, Chneiweiss H, Moura-Neto V, Costa SL (2019) The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain Behav Immun S0889-1591: 30042-X (in press)
- Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55-63 https://doi.org/10.1016/0022-1759(83)90303-4
- Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27: 612-616 https://doi.org/10.1016/S0891-5849(99)00107-0
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 https://doi.org/10.1006/abio.1976.9999
- Garcia-Alloza M, Ferrara BJ, Dodwell SA, Hickey GA, Hyman BT, Bacskai BJ (2007) A limited role for microglia in antibody mediated plaque clearance in APP mice. Neurobiol Di 28: 286-292 https://doi.org/10.1016/j.nbd.2007.07.019
-
Zhao X, Yuan L, Yu H, Xi Y, Ma W, Zhou X, Ding J, Xiao R (2014) Genistein inhibited amyloid-
${\beta}$ induced inflammatory damage in C6 glial cells. Arch Med Res 45: 152-157 https://doi.org/10.1016/j.arcmed.2013.12.008 -
Bing L, Wu J, Zhang J, Chen Y, Hong Z, Zu H (2015) DHT inhibits the
$A{\beta}25$ -35-induced apoptosis by regulation of seladin-1, survivin, XIAP, bax, and bcl-xl expression through a rapid PI3-K/Akt signaling in C6 glial cell lines. Neurochem Res 40: 41-48 https://doi.org/10.1007/s11064-014-1463-3 - Maruyama W, Shaomoto-Nagai M, Kato Y, Hisaka S, Osawa T, Naoi M (2014) Role of lipid peroxide in the neurodegenerative disorders. Subcell Biochem 77: 127-136 https://doi.org/10.1007/978-94-007-7920-4_11
- Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer's disease. Brain Pathol 9: 133-146 https://doi.org/10.1111/j.1750-3639.1999.tb00215.x
- Ayasolla K, Khan M, Singh AK, Singh I (2004) Inflammatory mediator and beta-amyloid (25-35)-induced ceramide generation and iNOS expression are inhibited by vitamin E. Free Radic Biol Med 37: 325-338 https://doi.org/10.1016/j.freeradbiomed.2004.04.007
- Park SE, Sapkota K, Kim S, Kim H, Kim SJ (2011) Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol 164: 1008-1025 https://doi.org/10.1111/j.1476-5381.2011.01389.x
- Kheiri G, Dolatshahi M, Rahmani F, Rezaei N (2018) Role of p38/MAPKs in Alzheimer's disease: implications for amyloid beta toxicity targeted therapy. Rev Neurosci 30: 9-30 https://doi.org/10.1515/revneuro-2018-0008
- Hayden MS, Ghosh S (2004) Signaling to NF-kappaB. Genes Dev 18: 2195-2224 https://doi.org/10.1101/gad.1228704
- Sun GY, Chen Z, Jasmer KJ, Chuang DY, Gu Z, Hannink M, Simonyi A (2015) Quercetin attenuates inflammatory responses in BV-2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS One 10: e0141509 https://doi.org/10.1371/journal.pone.0141509