DOI QR코드

DOI QR Code

PETG/POE 열가소성 복합재료의 특성평가 및 전산해석

Characterization and 3D Analysis of PETG/POE Thermoplastic Composites

  • 투고 : 2019.10.01
  • 심사 : 2019.12.31
  • 발행 : 2019.12.31

초록

자전거 프레임 및 산업 부품과 같은 다양한 산업 분야에 PETG 열가소성 복합 재료를 적용하려면 제조 된 복합 재료의 내충격성, 내구성, 기계적 특성 및 3D 분석을 안정성 검증이 필수적이다. 본 연구에서는 비정질 수지인 PETG 수지의 기계적 특성, 내구성 및 내충격성을 향상시키기 위해 다양한 질량분율의 POE(폴리올레핀 엘라스토머)를 보강하여 화합물 및 사출 성형 공정을 수행 하였다. POE질량분율에 따른 PETG 열가소성 복합재의 열적 및 기계적 특성 및 샤르피 충격 강도 등에 대한 분석을 수행 하였다. 열적 및 기계적 특성 분석 결과, POE 소재가 첨가 된 PETG 열가소성 복합재의 경우 열적 및 기계적 특성이 감소하는 경향이 있지만 내충격성이 우수한 경향을 나타내었고, POE첨가에 따른 3D 전산해석 결과, 파손여부 없이 우수한 안정성을 나타내었다.

In order to apply thermoplastic composites using PETG resin to various industrial fields such as bicycle frames and industrial parts, it is necessary to verify the impact resistance, durability, mechanical properties and 3D analysis of the manufactured composite materials. To improve the mechanical properties, durability and impact resistance of PETG resin, an amorphous resin, in this study, compound and injection molding process were carried out enhanced various weight percent POE(polyolefin elastomer). The thermal and mechanical properties of the thermoplastic composites, and the charpy impact strength, The analysis was performed to evaluate the characteristics according to weight percent of POE. Charpy impact strength test was conducted to analyze the impact characteristics, and the fracture section was analyzed after the impact strength test. In the case of POE material-added thermoplastic composites, thermal and mechanical properties tend to decrease, but workability and impact resistance tend to be superior to those of PETG materials.

키워드

참고문헌

  1. Franciszczak, P., Piesowicz, E., and Kalnins, K., "Manufacturing and Properties of r-PETG/PET Fibre Composite - Novel Approach for Recycling of PETG Plastic Scrap into Engineering Compound for Injection Moulding," Composites Part B: Engineering, Vol. 154, No. 1, 2018, pp. 430-438. https://doi.org/10.1016/j.compositesb.2018.09.023
  2. Phetphaisit, C.W., Namahoot, J., Saengkiettiyut, K., Ruamcharoen, J., and Ruamcharoen, P., "Green Metal Organic Coating from Recycled PETs and Modified Natural Rubber for the Automobile Industry," Progress in Organic Coatings, Vol. 86, 2015, pp. 181-189. https://doi.org/10.1016/j.porgcoat.2015.04.025
  3. Borg, R.P., Baldacchino, O., and Ferrara, L., "Early Age Performance and Mechanical Characteristics of Recycled PET Fibre Reinforced Concrete," Construction and Building Materials, Vol. 166, 2016, pp. 29-47.
  4. Jo, B.-W., Park, S.-K., and Park, J.-C., "Mechanical Properties of Polymer Concrete Made with Recycled PET and Recycled Concrete Aggregates," Construction and Building Materials, Vol. 22, No. 12, 2008, pp. 2281-2291. https://doi.org/10.1016/j.conbuildmat.2007.10.009
  5. Zhang, X., Li, B., Wang, K., Zhang, Q., and Fu, Q., "The Effect of Interfacial Adhesion on the Impact Strength of Immiscible PP/PETG Blends Compatibilized with Triblock Copolymers," Polymer, Vol. 50, No. 19, 2009, pp. 4737-4744. https://doi.org/10.1016/j.polymer.2009.08.004
  6. Lacroix, C., Bousmina, M., Carreau, P.J., Favis, B.D., and Michel, A., "Properties of PETG/EVA Blends: 1. Viscoelastic, Morphological and Interfacial Properties," Polymer, Vol. 37, No. 14, 1996, pp. 2939-2947. https://doi.org/10.1016/0032-3861(96)89389-X
  7. Hwang, S.H., Jeong, K.S., and Jung, J.C., "Thermal and Mechanical Properties of Amorphous Copolyester (PETG)/LCP Blends," European Polymer Journal, Vol. 35, No. 8, 1999, pp. 1439-1443. https://doi.org/10.1016/S0014-3057(98)00235-3
  8. Shi, Q., Chen, C., Gao, L., Jiao, L., and Guo, W., "Physical and Degradation Properties of Binary or Ternary Blends Composed of Poly(lactic acid), Thermoplastic Starch and GMA Grafted POE," Polymer Degradation and Stability, Vol. 96, No. 1, 2011, pp. 175-182. https://doi.org/10.1016/j.polymdegradstab.2010.10.002
  9. Li, S., Lv, Y., Sheng, J., Tian, H., and Tian, M., "Morphology Development of POE/PP Thermoplastic Vulcanizates (TPVs) during Dynamic Vulcanization," European Polymer Journal, Vol. 93, 2017, pp. 590-601. https://doi.org/10.1016/j.eurpolymj.2017.06.019
  10. Shi, M., Yang, Y.-Y., Chaw, C.-S., Goh, S.-H., and Heller, J., "Double Walled POE/PLGA Microspheres: Encapsulation of Water-soluble and Water-insoluble Proteins and Their Release Properties," Journal of Controlled Release, Vol. 89, 2003, pp. 167-177. https://doi.org/10.1016/S0168-3659(02)00493-5
  11. Wang, B., Yang, Y., and Guo, W., "Effect of EVOH on the Morphology, Mechanical and Barrier Properties of PA6/POE-g-MAH/EVOH Ternary Blends," Materials & Design, Vol. 40, 2012, pp. 185-189. https://doi.org/10.1016/j.matdes.2012.03.017
  12. Tanaka, K., and Katayama, T., "Molding of Flat Glass Fiber Reinforced Thermoplastics," Modern Physics B, Vol. 24, 2010, pp. 2555-2560. https://doi.org/10.1142/S0217979210065258
  13. Wang, B., Yang, Y., and Guo, W., "Polyolefin Thermoplastic Elastomers from 1-octene Copolymerization with 1-decene and Cyclopentene," European Polymer Journal, Vol. 93, 2017, pp. 200-211. https://doi.org/10.1016/j.eurpolymj.2017.05.044
  14. Khonakdar, H.A., Jafari, S.H., and Hesabi, M.-N., "Miscibility Analysis, Viscoelastic Properties and Morphology of Cyclic Olefin Copolymer/polyolefin Elastomer (COC/POE) Blends," Composites Part B: Engineering, Vol. 69, 2015, pp. 111-119. https://doi.org/10.1016/j.compositesb.2014.09.034
  15. Alanalp, M.B., and Durmus, A., "Quantifying Microstructural, Thermal, Mechanical and Solid-state Viscoelastic Properties of Polyolefin Blend Type Thermoplastic Elastomer Compounds," Polymer, Vol. 142, 2018, pp. 267-276. https://doi.org/10.1016/j.polymer.2018.03.054
  16. Li, M.F., Chang, K.Q., Zhong, W.B., Xiang, C.X., Wang, W., Liu, Q.Z., Liu, K., Wang, Y.D., Lu, Z.T., and Wang, D., "A Highly Stretchable, Breathable and Thermoregulatory Electronic Skin Based on the Polyolefin Elastomer Nanofiber Membrane," Journal of Applied Surface Science, Vol. 486, 2019, pp. 249-256. https://doi.org/10.1016/j.apsusc.2019.04.271
  17. Ramkumar, P.L., Kulkarni, D.M., Abhijit, V.V.R., and Cherukumudi, A., "Investigation of MeltFlowIndex and Impact Strength of Foamed LLDPE for Rotational Moulding Process," Procedia Materials Science, Vol. 6, 2014, pp. 361-367. https://doi.org/10.1016/j.mspro.2014.07.046
  18. Kwon, Y.I., Lim, E.J., and Song, Y.S., "Simulation of Injection-compression Molding for Thin and Large Battery Housing," Current Applied Physics, Vol. 18, No. 11, 2018, pp. 1451-1457. https://doi.org/10.1016/j.cap.2018.08.017