DOI QR코드

DOI QR Code

Optimal Flow Rate Evaluation for Low Energy, High Efficiency Cleaning of Forward Osmosis (FO)

정삼투 공정의 저에너지 고효율 세정을 위한 최적 유속 평가

  • Kim, Yihyang (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Kim, Jungbin (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Zhan, Min (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Min, Dahae (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Hong, Seungkwan (School of Civil, Environmental and Architectural Engineering, Korea University)
  • 김이향 (고려대학교 공과대학 건축사회환경공학부) ;
  • 김정빈 (고려대학교 공과대학 건축사회환경공학부) ;
  • 잔민 (고려대학교 공과대학 건축사회환경공학부) ;
  • 민다혜 (고려대학교 공과대학 건축사회환경공학부) ;
  • 홍승관 (고려대학교 공과대학 건축사회환경공학부)
  • Received : 2019.11.29
  • Accepted : 2019.12.20
  • Published : 2019.12.31

Abstract

Forward osmosis (FO) is operated at a lower pressure than reverse osmosis (RO), which has great advantages in terms of fouling control, maintenance, membrane cleaning, and potential energy reduction. In particular, since the membrane fouling layer of the forward osmosis process has a relatively loose and dispersed property, it is possible to control the membrane fouling by physical cleaning, unlike the reverse osmosis process. However, existing studies do not apply the proper cleaning flow rate for forward osmosis physical cleaning, and thus there is a limit that the optimal operation can not be performed. Therefore, this study aims to evaluate the justification of proper flow rate that can show high efficiency cleaning with economical energy amount. The membrane fouling experiments of the forward osmosis process were maintained at a circulating flow rate of 8.54 cm/s and the recovery rates were compared with the three cleaning flow rates. As a result of this experiment, it was confirmed that the 2 × speed cleaning showed the same efficiency as the water permeability recovery rate of the 3 × speed cleaning, and it was confirmed that the 2 × speed cleaning was an appropriate flow rate with high cleaning efficiency and economical SEC.

정삼투 공정(forward osmosis, FO)은 역삼투 공정(reverse osmosis, RO)에 비해 저압으로 운영되므로 오염 제어, 유지 보수, 막 세정 및 잠재적 에너지 저감 측면에서 큰 이점이 있어 다양한 분야에 적용할 수 있는 기술이다. 특히, 정삼투 공정의 막오염층이 비교적 느슨하고 분산된 특성을 가지므로 역삼투 공정과 달리 물리세정만으로도 충분한 막오염 제어가 가능하다. 하지만 기존 연구들의 경우 정삼투 물리세정에 적합한 세정 유속을 적용하지 않아 최적화 운전을 하지 못했다는 한계가 있다. 따라서 이 연구는 경제적인 에너지량으로 높은 효율의 세정을 보일 수 있는 적절한 유속의 정당성 평가를 목적으로 한다. 정삼투 공정 막오염 실험을 8.54 cm/s 순환 유속으로 유지하고 세 가지 세정유속으로 회복률과 SEC (specific energy consumption) 비교 평가하였다. 이 실험의 결과로 2배속 세정이 3배속 세정의 수투과도 회복률 만큼의 높은 효율을 보이는 동시에, 2배속 세정이 높은 세정효율 및 경제적인 SEC를 보이는 적절한 유속이라는 것을 확인하였다.

Keywords

References

  1. M. Elimelech and W. A. Phillip, "The future of seawater desalination: Energy, technology, and the environment", Science, 333, 712 (2011). https://doi.org/10.1126/science.1200488
  2. L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin, "Reverse osmosis desalination: Water sources, technology, and today's challenges", Water Res., 43, 2317 (2009). https://doi.org/10.1016/j.watres.2009.03.010
  3. M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, and A. M. Mayes, "Science and technology for water purification in the coming decades", Nature, 452, 301 (2008). https://doi.org/10.1038/nature06599
  4. S. Lee, C. Boo, M. Elimelech, and S. Hong, "Comparison of fouling behavior in forward osmosis (FO) and reverse osmosis (RO)", J. Membr. Sci., 365, 34 (2010). https://doi.org/10.1016/j.memsci.2010.08.036
  5. E. M. Hoek and M. Elimelech, "Cake-enhanced concentration polarization: A new fouling mechanism for salt-rejecting membranes", Environ. Sci. Technol., 37, 5581 (2003). https://doi.org/10.1021/es0262636
  6. D. L. Shaffer, J. R. Werber, H. Jaramillo, S. Lin, and M. Elimelech, "Forward osmosis: Where are we now?", Desalination, 356, 271 (2015). https://doi.org/10.1016/j.desal.2014.10.031
  7. N. Misdan, W. Lau, and A. Ismail, "Seawater reverse osmosis (SWRO) desalination by thin-film composite membrane - Current development, challenges and future prospects", Desalination, 287, 228 (2012). https://doi.org/10.1016/j.desal.2011.11.001
  8. T. Nguyen, F. A. Roddick, and L. Fan, "Biofouling of water treatment membranes: A review of the underlying causes, monitoring techniques and control measures", Membranes, 2, 804 (2012). https://doi.org/10.3390/membranes2040804
  9. A. Ruiz-Garcia, N. Melian-Martel, and I. Nuez, "Short review on predicting fouling in RO desalination", Membranes, 7, 62 (2017). https://doi.org/10.3390/membranes7040062
  10. C.-H. Wei, S. Laborie, R. B. Aim, and G. Amy, "Full utilization of silt density index (SDI) measurements for seawater pre-treatment", J. Membr. Sci., 405, 212 (2012). https://doi.org/10.1016/j.memsci.2012.03.010
  11. L. N. Sim, Y. Ye, V. Chen, and A. G. Fane, "Comparison of MFI-UF constant pressure, MFIUF constant flux and crossflow sampler-modified fouling index ultrafiltration (CFSMFI UF)", Water Res., 45, 1639 (2011). https://doi.org/10.1016/j.watres.2010.12.001
  12. ASTM, "Standard test method for silt density index (SDI) of water", D19.08 D4189-07 (2014).
  13. A. Alhadidi, B. Blankert, A. Kemperman, R. Schurer, J. Schippers, M. Wessling, and W. van der Meer, "Limitations, Improvements and alternatives of the silt density index", Desalin. Water Treat., 51, 1104 (2013). https://doi.org/10.1080/19443994.2012.705049
  14. Y. Jin, H. Lee, Y. O. Jin, and S. Hong, "Application of multiple modified fouling index (MFI) measurements at full-scale SWRO plant", Desalination, 407, 24 (2017). https://doi.org/10.1016/j.desal.2016.12.006
  15. Y. Jin, Y. Ju, H. Lee, and S. Hong, "Fouling potential evaluation by cake fouling index: Theoretical development, measurements, and its implications for fouling mechanisms", J. Membr. Sci., 490, 57 (2015). https://doi.org/10.1016/j.memsci.2015.04.049
  16. L. Malaeb and G. M. Ayoub, "Reverse osmosis technology for water treatment: State of the art review", Desalination, 267, 1 (2011). https://doi.org/10.1016/j.desal.2010.09.001
  17. B. G. Choi, D. I. Kim, and S. Hong, "Fouling evaluation and mechanisms in a FO-RO hybrid process for direct potable reuse", J. Membr. Sci., 520, 89 (2016). https://doi.org/10.1016/j.memsci.2016.07.035
  18. B. G. Choi, M. Zhan, K. Shin, S. Lee, and S. Hong, "Pilot-scale evaluation of FO-RO osmotic dilution process for treating wastewater from coal-fired power plant integrated with seawater desalination", J. Membr. Sci., 540, 78 (2017). https://doi.org/10.1016/j.memsci.2017.06.036
  19. C. Boo, M. Elimelech, and S. Hong, "Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation", J. Membr. Sci., 444, 148 (2013). https://doi.org/10.1016/j.memsci.2013.05.004
  20. Y. Kim, M. Elimelech, H. K. Shon, and S. Hong, "Combined organic and colloidal fouling in forward osmosis: Fouling reversibility and the role of applied pressure", J. Membr. Sci., 460, 206 (2014). https://doi.org/10.1016/j.memsci.2014.02.038
  21. G. Gwak and S. Hong, "New approach for scaling control in forward osmosis (FO) by using an antiscalant- blended draw solution", J. Membr. Sci., 530, 95 (2017). https://doi.org/10.1016/j.memsci.2017.02.024
  22. G. Gwak, B. Jung, S. Han, and S. Hong, "Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis", Water Res., 80, 294 (2015). https://doi.org/10.1016/j.watres.2015.04.041
  23. B. Mi and M. Elimelech, "Chemical and physical aspects of organic fouling of forward osmosis membranes", J. Membr. Sci., 320, 292 (2008). https://doi.org/10.1016/j.memsci.2008.04.036
  24. A. Achilli, T. Y. Cath, E. A. Marchand, and A. E. Childress, "The forward osmosis membrane bioreactor: A low fouling alternative to MBR processes", Desalination, 239, 10 (2009). https://doi.org/10.1016/j.desal.2008.02.022
  25. B. Mi and M. Elimelech, "Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents", J. Membr. Sci., 348, 337 (2010). https://doi.org/10.1016/j.memsci.2009.11.021
  26. B. Mi and M. Elimelech, "Gypsum scaling and cleaning in forward osmosis: Measurements and mechanisms", Environ. Sci. Technol., 44, 2022 (2010). https://doi.org/10.1021/es903623r
  27. B. Mi and M. Elimelech, "Silica scaling and scaling reversibility in forward osmosis", Desalination, 312, 75 (2013). https://doi.org/10.1016/j.desal.2012.08.034
  28. N. M. Mazlan, P. Marchetti, H. Maples, B. Gu, S. Karan, A. Bismarck, and A. G. Livingston, "Organic fouling behaviour of structurally and chemically different forward osmosis membranes - A study of cellulose triacetate and thin film composite membranes", J. Membr. Sci., 520, 247 (2016). https://doi.org/10.1016/j.memsci.2016.07.065
  29. G. Blandin, H. Vervoort, P. Le-Clech, and A. R. Verliefde, "Fouling and cleaning of high permeability forward osmosis membranes", J. Water Process Eng., 9, 161 (2016). https://doi.org/10.1016/j.jwpe.2015.12.007
  30. M. M. Motsa, B. B. Mamba, J. M. Thwala, and A. R. D. Verliefde, "Osmotic backwash of fouled FO membranes: Cleaning mechanisms and membrane surface properties after cleaning", Desalination, 402, 62 (2017). https://doi.org/10.1016/j.desal.2016.09.018
  31. C. Boo, M. Elimelech, and S. Hong, "Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation", J. Membr. Sci., 444, 148 (2013). https://doi.org/10.1016/j.memsci.2013.05.004
  32. R. V. Linares, S. S. Bucs, Z. Li, M. AbuGhdeeb, G. Amy, and J. S. Vrouwenvelder, "Impact of spacer thickness on biofouling in forward osmosis", Water Res., 57, 223 (2014). https://doi.org/10.1016/j.watres.2014.03.046
  33. N. T. Hancock, P. Xu, M. J. Roby, J. D. Gomez, and T. Y. Cath, "Towards direct potable reuse with forward osmosis: Technical assessment of long-term process performance at the pilot scale", J. Membr. Sci., 445, 34 (2013). https://doi.org/10.1016/j.memsci.2013.04.056
  34. B. G. Choi, M. Zhan, K. Shin, S. Lee, and S. Hong, "Pilot-scale evaluation of FO-RO osmotic dilution process for treating wastewater from coal-fired power plant integrated with seawater desalination", J. Membr. Sci., 540, 78 (2017). https://doi.org/10.1016/j.memsci.2017.06.036
  35. M. Zhan, G. Gwak, D. I. Kim, K. Park, and S. Hong, "Quantitative analysis of the irreversible membrane fouling of forward osmosis during wastewater reclamation: Correlation with the modified fouling index", J. Membr. Sci., DOI:10.1016/j.memsci.2019.117757.