DOI QR코드

DOI QR Code

2017년 통영 해역에서의 Alexandrium affine 우점 해수의 흡광 특성

Analysis on the Optical Absorption Property of Sea Waters Dominated by Alexandrium affine in Coastal Waters off Tongyeong, 2017

  • Kim, Wonkook (Dept. Civil and Environmental Engineering, Pusan National University) ;
  • Han, Tai-Hyun (Korea Ocean Satellite Center, Korea Institute of Ocean Science and Technology) ;
  • Jung, Seung Won (South Sea Research Institute, Korea Institute of Ocean Science and Technology) ;
  • Kang, Donhyug (Maritime Security Research Center, Korea Institute of Ocean Science and Technology)
  • 투고 : 2019.12.16
  • 심사 : 2019.12.23
  • 발행 : 2019.12.31

초록

적조는 연안 해역에서 양식어류를 폐사 시키는 등 많은 경제적 피해를 입혀왔다. 이러한 적조의 광역 분포를 효과적으로 파악하기 위하여 원격탐사가 활용되어 왔는데, 적조 해수가 가지는 흡광 특성은 원격탐사에 중요한 요소인 해수반사도를 이해함에 있어서 핵심적인 역할을 한다. 본 연구에서는 2017년 8월 통영 인근 해역에서 출현한 Alexandrium affine 종이 우점한 해수에 대한 흡광 특성을 분석하였다. 선박 관측을 통하여 총 20개 정점에서 획득한 시료에서 색소 흡광, 부유물 흡광, 용존유기물 흡광을 측정하였고, 이를 수질 변수인 엽록소 농도, 부유물 농도와 관련하여 분석하였다. 분석 결과, 규조류 우점 해수와는 다르게 Alexandrium 우점 시료는 400 nm 이하에서 강한 흡광을 나타내었고, 또한 400 nm - 500 nm 에서 굴곡이 크게 나타남을 확인하였다. 색소 흡광의 집적 효과 또한 규조류와 다르게 나타남을 확인하였고, 부유물 및 용존유기물 흡광 모델 (adg(λ)=adg0)e-s(λ-λ0))에서의 지수부 계수(s) 역시 기존 규조류에서 일반적으로 사용하는 0.015와는 달리 0.01이 더 적합함을 보였다.

Red tide has caused massive fish kills in Korean coastal waters with devastating economic loss in the aquaculture industry since 1995. Remote sensing technique has shown to be effective for the detection of red tide in wide areas, where the absorption property of red tide water plays a central role in understanding the red tide reflectance. This study analyzed the optical absorption property of sea waters dominated by the dinoflagellate specie of Alexandirum affine, off the Tongyeong area in August, 2017. Water samples collected from 20 stations in the ship-based campaign were measured for absorption by pigment, suspended solid, and dissolved organic matter, with the corresponding water quality variables such as chlorophyll concentration and total suspended solid. The analysis showed that Alexandrium-dominated water exhibits strong absorption in the spectral range below 400 nm unlike that of diatom-dominated waters, and greater fluctuations in the range of 400 nm - 500 nm. The packaging effect in pigment absorption was stronger in Alexandrium-dominated waters, and the exponent in the absorption by detritus and gelbstoff is disparate for diatom and Alexandrium. In the model for the detritus and gelbstoff absorption (adg(λ)=adg0)e-s(λ-λ0)), the optimal exponent coefficient(s) for the Alexandrium was close to 0.01 rather than to 0.015, which was commonly use for modelling diatom waters.

키워드

참고문헌

  1. Ahn, Y.H. and Shanmugam, P. (2006), Detecting the red tide algal blooms from satellite ocean color observations in optically complex Northeast-Asia Coastal waters, Remote Sensing of Environment, Vol. 103, No. 4, pp. 419-437. https://doi.org/10.1016/j.rse.2006.04.007
  2. Babin, M., Therriault, J.C., Legendre, L., and Condal, A. (1993), Variations in the specific absorption coefficient for natural phytoplankton assemblages: Impact on estimates of primary production, Limnology and Oceanography, Vol. 38, No. 1, pp. 154-177. https://doi.org/10.4319/lo.1993.38.1.0154
  3. Bricaud, A., Babin, M., Morel, A., and Claustre, H. (1995), Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: Analysis and parameterization, Journal of Geophysical Research: Oceans, Vol. 100, No. C7, pp. 13321-13332. https://doi.org/10.1029/95JC00463
  4. Carder, K.L. and Steward, R.G. (1985), A remote-sensing reflectance model of a red-tide dinoflagellate off west Florida, Limnology and Oceanography, Vol. 30, No. 2, pp. 286-298. https://doi.org/10.4319/lo.1985.30.2.0286
  5. Carreto, J.I., De Marco, S.G., and Lutz, V.A. (1989), UV-absorbing pigments in the dinoflagellates Alexandrium excavatum and Prorocentrum micans effects of light intensity, Red Tides: Biology, Environmental Science and Toxicology, Vol. 69, pp. 331-335.
  6. Devred, E., Sathyendranath, S. Stuart, V., Maass, H., Ulloa, O., and Platt, T. (2006), A two-component model of phytoplankton absorption in the open ocean: Theory and applications, Journal of Geophysical Research: Oceans, Vol. 111, No. C3.
  7. Dierssen, H.M., Kudela, R.M., Ryan, J.P., and Zimmerman, R.C. (2006), Red and black tides: Quantitative analysis of water-leaving radiance and perceived color for phytoplankton, colored dissolved organic matter, and suspended sediments, Limnology and Oceanography, Vol. 51, No. 6, pp. 2646-2659. https://doi.org/10.4319/lo.2006.51.6.2646
  8. Hallegraeff, G.M. (1993), A review of harmful algal blooms and their apparent global increase, Phycologia, Vol. 32, No .2, pp. 79-99. https://doi.org/10.2216/i0031-8884-32-2-79.1
  9. Hu, C., Muller-Karger, F.E., Taylor, C.J., Carder, K.L., Kelble, C., Johns, E., and Heil, C. A. (2005), Red tide detection and tracing using MODIS fluorescence data: A regional example in SW Florida coastal waters, Remote Sensing of Environment, Vol. 97, No. 3, pp. 311-321. https://doi.org/10.1016/j.rse.2005.05.013
  10. Jeffrey, S.T. and Humphrey, G.F. (1975), New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton, Biochemie und Physiologie der Pflanzen, Vol. 167, No. 2, pp. 191-194. https://doi.org/10.1016/s0015-3796(17)30778-3
  11. Kahru, M. and Mitchell, B.G. (1998), Spectral reflectance and absorption of a massive red tide off southern California, Journal of Geophysical Research: Oceans, Vol. 103, No. C10, pp. 21601-21609. https://doi.org/10.1029/98JC01945
  12. Kim, E.S., Li, Z., Oh, S.J., Yoon, Y.H., and Shin, H.H. (2017), Morphological identification of Alexandrium species (Dinophyceae) from Jinhae-Masan Bay, Korea, Ocean Science Journal, Vol. 52, No. 3, pp. 427-437. https://doi.org/10.1007/s12601-017-0031-6
  13. Kim, W., Han, T.H., Choi, J.M., Jung, S.W., and Kang, D. (2018), Investigating optical properties of red tide in a turbid coastal area near Tongyeong, South Korea, OCEANS-MTS/IEEE Kobe Techno-Oceans (OTO) 2018, 28-31 May, Kobe, Japan, pp. 1-5.
  14. Kishino, M., Takahashi, M., Okami, N., and Ichimura, S. (1985), Estimation of the spectral absorption coefficients of phytoplankton in the sea, Bulletin of Marine Science, Vol. 37, No. 2, pp. 634-642.
  15. Lee, C.K., Park, T.G., Park, Y.T., and Lim, W.A. (2013), Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides, Harmful Algae, Vol. 30, pp. S3-S14.
  16. Lee, Z. and Carder, K.L. (2004), Absorption spectrum of phytoplankton pigments derived from hyperspectral remotesensing reflectance, Remote Sensing of Environment, Vol. 89, No. 3, pp. 361-368. https://doi.org/10.1016/j.rse.2003.10.013
  17. Leong, S.C.Y. and Taguchi, S. (2006), Detecting the bloomforming dinoflagellate Alexandrium tamarense using the absorption signature, Hydrobiologia, Vol. 568, No. 1, pp. 299-308. https://doi.org/10.1007/s10750-006-0202-4
  18. Millie, D.F., Schofield, O.M., Kirkpatrick, G.J., Johnsen, G., Tester, P.A., and Vinyard, B.T. (1997), Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide dinoflagellate, Gymnodinium breve, Limnology and Oceanography, Vol. 42, No. 52, pp. 1240-1251. https://doi.org/10.4319/lo.1997.42.5_part_2.1240
  19. Morel, A. and Bricaud, A. (1981), Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton, Deep Sea Research Part A. Oceanographic Research Papers, Vol. 28, No. 11, pp. 1375-1393. https://doi.org/10.1016/0198-0149(81)90039-X
  20. Nakanishi, K., Masao, A., Sako, Y., Ishida, Y., Muguruma, H., and Karube, I. (1996), Detection of the red tide-causing plankton Alexandrium affine by a piezoelectric immunosensor using a novel method of immobilizing, antibodies, Analytical Letters, Vol. 29, No. 8, pp. 1247-1258. https://doi.org/10.1080/00032719608001478
  21. Park, T.G., Lim, W.A., Park, Y.T., Lee, C.K., and Jeong, H.J. (2013), Economic impact, management and mitigation of red tides in Korea, Harmful Algae, Vol. 30, pp. S131-S143. https://doi.org/10.1016/j.hal.2013.10.012
  22. Roesler, C.S., Perry, M.J., and Carder, K.L. (1989), Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters, Limnology and Oceanography, Vol. 34, No. 8, pp. 1510-1523. https://doi.org/10.4319/lo.1989.34.8.1510