DOI QR코드

DOI QR Code

위성영상으로 DSM을 생성하기 위한 SGM Cost의 비교

Comparison of SGM Cost for DSM Generation Using Satellite Images

  • Lee, Hyoseong (Dept. of Civil Engineering, Sunchon National University) ;
  • Park, Soonyoung (College of IT Engineering, Kyungpook National University) ;
  • Kwon, Wonsuk (Agency for Defense Development) ;
  • Han, Dongyeob (Department of Marine and Civil Engineering, Chonnam National University)
  • 투고 : 2019.11.15
  • 심사 : 2019.12.19
  • 발행 : 2019.12.31

초록

본 연구는 ISPRS (International Society for Photogrammetry and Remote Sensing)에서 제공하는 스페인 Terrassa 지역의 WorldView-1 고해상도 스테레오 위성영상으로부터 DSM (Digital Surface Model) 제작을 위해 SGM을 적용하였다. SGM (Semi Global Matching)은 스테레오 영상에 대한 매칭 Cost를 여러 방향에서 계산하고, 계산된 Cost를 순차적으로 누적시킨 후, 누적된 Cost의 최소(또는 최대) 값에 해당하는 시차를 계산하는 영상매칭 알고리즘이다. SGM 적용을 위한 Cost는 MI (Mutual Information, NCC (Normalized Cross-Correlation), CT (Census Transform)를 적용하였으며, 각각의 Cost별 DSM에서 지형지물의 외곽선 표현결과 정확도와 그 성능을 제시하였다. 사용 영상과 실험 대상지역을 토대로, CT Cost 결과 정확도가 가장 우수하였으며, 외곽선 표현 또한 가장 선명하게 묘사되었다. 아울러 SGM 방법은 기존 소프트웨어에 비해 보다 세밀한 외곽선을 표현한 반면 수계지역에서는 많은 오류가 발생하였다.

This study applied SGM (Semi Global Matching) to generate DSM (Digital Surface Model) using WorldView-1 high-resolution satellite stereo pair in Terrassa, Spain provided by ISPRS (International Society for Photogrammetry and Remote Sensing). The SGM is an image matching algorithm that performs the computation of the matching cost for the stereo pair in multi-paths and aggregates the computed costs sequentially. This method finally calculates the disparity corresponding to the minimum (or maximum) value of the aggregation cost. The cost was applied to MI (Mutual Information), NCC (Normalized Cross-Correlation), and CT (Census Transform) in order to the SGM. The accuracy and performance of the outline representation result in DSM by each cost are presented. Based on the images used and the subject area, the accuracy of the CT cost results was the highest, and the outline representation was also most clearly depicted. In addition, while the SGM method represented more detailed outlines than the existing software, many errors occurred in the water area.

키워드

참고문헌

  1. Baek, S.H and Park, S.Y. (2010), A stereo matching technique using multi-directional scan-line optimization and reliabilitybased hole-filling, KIPS Transactions on Computer and Communication Systems, Vol. 17, No. 2, pp. 115-124. (in Korean with English abstract)
  2. Baltsavias, E.P., Mason, S.O., and Stallmann, D. (1995), Use of DTMs/DSMs and orthoimages to support building extraction, Semantic Scholar, https://pdfs.semanticscholar.org/3048/b0e6a3c13 -f28ecf84b3392018205e75f89da.pdf (last date accessed: 15 October 2019).
  3. D'Angelo, P. and Reinartz, P. (2011), Semiglobal matching results on the ISPRS stereo matching benchmark, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 14-17 June, Hannover, Germany, Vol. XXXVIII-4/W19, pp. 79-84.
  4. Dall'Asta, E. and Roncella, R. (2014), A comparision of semiglobal and local dense matching algorithms for surface reconstruction, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 23-25 June, Riva del Garda, Italy, Vol. XL-5, pp. 187-194.
  5. Hirschmuller, H. (2008), Stereo processing by semiglobal matching and mutual information, IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 30, No. 2, pp. 328-341. https://doi.org/10.1109/TPAMI.2007.1166
  6. Jang, Y.J., Lee, J.W., and Oh, J.H. (2019), Topographic information extraction from KOMPSAT satellite stereo data using SGM, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 37, No. 5, pp. 315-322. https://doi.org/10.7848/KSGPC.2019.37.5.315
  7. Kim, T. and Rhee, S. (2011), DEM generation from high resolution satellite images through a new 3D least squares matching algorithm, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 14-17 June, Hannover, Germany, Vol. XXXVIII-4/W19, pp. 153-157.
  8. Kornus, W., Alamus, R., Ruiz, J. and Talaya, J. (2006), DEM generation from SPOT-5 3-fold along track stereoscopic imagery using autocalibration, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 60, pp. 147-159. https://doi.org/10.1016/j.isprsjprs.2005.12.004
  9. Kwon, W. (2019), DSM generation and accuracy comparison using stereo matching based on image segmentation, Korean Journal of Remote Sensing, Vol. 35, No. 3, 2019, pp. 401-413. https://doi.org/10.7780/KJRS.2019.35.3.5
  10. Oh, J.H., Lee, W.H., Toth, C.K., Grejner-Brzezinska, D.A., and Lee, C.N. (2010), A piecewise approach to epipolar resampling of pushbroom satellite images based on RPC, Photogrammetric Engineering & Remote Sensing, Vol. 76, No. 12, pp. 1353-1363. https://doi.org/10.14358/PERS.76.12.1353
  11. Reinartz, P., Muller, R., Lehner, M. and Schroeder, M. (2006), Accuracy analysis for DSM and orthoimages derived from SPOT HRS stereo data using direct georeferencing, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 60, pp. 160-169. https://doi.org/10.1016/j.isprsjprs.2005.12.003
  12. Silveira, M.T., Feitosa, R.Q., Jacobsen, K.., Brito, J.L.N.S., and Heckel, Y. (2008), A Hybrid method for stereo image matching, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China, Vol. XXXVII, Part B1, pp. 895-900.
  13. Toutin, T. (2006), Generation of DSMs from SPOT-5 in-track HRS and across-track HRG stereo data using spatiotriangulation and autocalibration, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 60, pp. 170-181. https://doi.org/10.1016/j.isprsjprs.2006.02.003
  14. Yan, L., Fei, L., Chen, C., Ye, Z., and Zhu, R. (2016), A multiview dense image matching method for high-resolution aerial imagery based on a graph network, Remote Sensing, Vol. 8, No. 799, pp. 1-18.

피인용 문헌

  1. 분류영상과 에지영상을 이용한 입체 위성영상의 SGM 성능개선 vol.38, pp.6, 2019, https://doi.org/10.7848/ksgpc.2020.38.6.655