DOI QR코드

DOI QR Code

Comparative study of 2-nitroimidazole-fluorophore-conjugated derivatives with pimonidazole for imaging tumor hypoxia

  • Seelam, Sudhakara Reddy (Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Hong, Mi Kyung (Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Lee, Yun-Sang (Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine) ;
  • Jeong, Jae Min (Department of Nuclear Medicine, Institute of Radiation Medicine, Seoul National University College of Medicine)
  • Received : 2019.12.12
  • Accepted : 2019.12.28
  • Published : 2019.12.30

Abstract

Herein, 2-nitroimidazole-fluorophore conjugates were synthesized by linking 2-nitroimidazole and FITC or RITC via thiourea bonds. The prepared derivatives were stable for 2 h in Dulbecco's modified Eagle's medium (DMEM) at 37 ℃. The novel conjugates were studied for their in vitro uptake under hypoxic conditions using U87MG and CT-26 cell lines, showing significantly higher uptakes in hypoxic than normoxic cells. Immunohistochemical analysis confirmed hypoxia in U87MG and CT-26 xenografted tumor tissues. Moreover, the prepared conjugates were evaluated by in vivo experiments after intravenous injection in U87MG and CT-26 xenografted mice. Hypoxia was confirmed by immunohistochemistry of the prepared derivatives with co-injected pimonidazole. Confocal microscopy of the prepared derivatives showed strong fluorescence in hypoxic tumor tissues correlated with the pimonidazole distribution. This suggested that the 2-nitroimidazole-fluorophore conjugates are promising optical imaging probes for tumor hypoxia and are promising substitutes for pimonidazole immunohistochemistry, which requires a multi-step procedure of incubation involving antibody, second antibody, dye, hydrogen peroxide, and multiple washing steps.

Keywords

References

  1. Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 1995;22:265-280. https://doi.org/10.1007/BF01081524
  2. Rauth A, Melo T, Misra V. Bioreductive therapies: an overview of drugs and their mechanisms of action. Int J Radiat Oncol Biol Phys 1998;42:755-762. https://doi.org/10.1016/S0360-3016(98)00302-2
  3. Takasawa M, Moustafa RR, Baron J-C. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke 2008;39:1629-737. https://doi.org/10.1161/STROKEAHA.107.485938
  4. Sorger D, Patt M, Kumar P, Wiebe LI, Barthel H, Seese A, Dannenberg C, Tannapfel A, Kluge R, Sabri O. [$^{18}F$] Fluoroazomycinarabinofuranoside ($^{18}FAZA$) and [$^{18}F$] fuoromisonidazole ($^{18}FMISO$): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 2003;30:317-326. https://doi.org/10.1016/S0969-8051(02)00442-0
  5. Kizaka-Kondoh S, Konse-Nagasawa H. Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia. Ca Sci 2009;100:1366-1373. https://doi.org/10.1111/j.1349-7006.2009.01195.x
  6. Urano Y. Sensitive and selective tumor imaging with novel and highly activatable fluorescence probes. Anal Sci 2008;24:51-53. https://doi.org/10.2116/analsci.24.51
  7. Weissleder R, Mahmood U. Molecular imaging. Radiology 2001;219:316-333. https://doi.org/10.1148/radiology.219.2.r01ma19316
  8. Keereweer S, Kerrebijn JD, van Driel PB, Xie B, Kaijzel EL, Snoeks TJ, Que I, Hutteman M, van der Vorst JR, Mieog JS, Vahrmeijer AL, van de Velde CJ, Baatenburg de Jong RJ, Lowik CW. Optical image-guided surgery--where do we stand? Mol Imaging Biol 2011;13:199-207. https://doi.org/10.1007/s11307-010-0373-2
  9. Choi HS, Gibbs SL, Lee JH, Kim SH, Ashitate Y, Liu F, Hyun H, Park G, Xie Y, Bae S, Henary M, Frangioni JV. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotech 2013;31:148-153. https://doi.org/10.1038/nbt.2468
  10. Schauenstein K, Schauenstein E, Wick G. Fluorescence properties of free and protein bound fluorescein dyes. I. Macrospectrofluorometric measurements. J Histochem Cytochem 1978;26:277-283. https://doi.org/10.1177/26.4.77868
  11. Hawkins DM, Trache A, Ellis EA, Stevenson D, Holzenburg A, Meininger GA, Reddy SM. Quantification and confocal imaging of protein specific molecularly imprinted polymers. Biomacromolecules 2006;7:2560-2564. https://doi.org/10.1021/bm060494d
  12. Bremer C, Ntziachristos V, Weissleder R. Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 2003;13:231-243. https://doi.org/10.1007/s00330-002-1610-0
  13. McCann TE, Kosaka N, Koide Y, Mitsunaga M, Choyke PL, Nagano T, Urano Y, Kobayashi H. Activatable optical imaging with a silica-rhodamine based near infrared (SiR700) fluorophore: a comparison with cyanine based dyes. Bioconjug. Chem 2011;22:2531-2538. https://doi.org/10.1021/bc2003617
  14. Lackowicz JR. Principles of fluorescence spectroscopy. Plenum Press,(New York, 1983) Chapter 1983;5:111-150.
  15. Mei L, Xiang Y, Li N, Tong A. A new fluorescent probe of rhodamine B derivative for the detection of copper ion. Talanta 2007;72:1717-1722. https://doi.org/10.1016/j.talanta.2007.02.002
  16. Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545-580. https://doi.org/10.1101/gad.1047403
  17. Brindle K. New approaches for imaging tumour responses to treatment. Nat Rev Ca 2008;8:94-107. https://doi.org/10.1038/nrc2289
  18. Jager HR, Taylor MN, Theodossy T, Hopper C. MR imaging-guided interstitial photodynamic laser therapy for advanced head and neck tumors. Am J Neuroradiol 2005;26:1193-1200.
  19. Chu T, Hu S, Wei B, Wang Y, Liu X, Wang X. Synthesis and biological results of the technetium-99m-labeled 4-nitroimidazole for imaging tumor hypoxia. Bioorg Med Chem Lett 2004;14:747-749. https://doi.org/10.1016/j.bmcl.2003.11.017
  20. Li Z, Zhang J, Jin Z, Zhang W, Zhang Y. Synthesis and biodistribution of novel 99mTc labeled 4-nitroimidazole dithiocarbamate complexes as potential agents to target tumor hypoxia. Med Chem Commun 2015;6:1143-1148. https://doi.org/10.1039/C5MD00042D
  21. Hoigebazar L, Jeong JM. Hypoxia Imaging Agents Labeled with Positron Emitters. Theranostics, Gallium-68, and Other Radionuclides: Springer; 2013, p. 285-299.
  22. Dubois LJ, Lieuwes NG, Janssen MH, Peeters WJ, Windhorst AD, Walsh JC, Kolb HC, Ollers MC, Bussink J, van Dongen GA, van der Kogel A, Lambin P. Preclinical evaluation and validation of [$^{18}F$] HX4, a promising hypoxia marker for PET imaging. Proc Nat Acad Sci 2011;108:14620-14625. https://doi.org/10.1073/pnas.1102526108
  23. Halmos GB, Bruine de Bruin L, Langendijk JA, van der Laan BFAM, Pruim J, Steenbakkers RJHM. Head and neck tumor hypoxia imaging by $^{18}F$-fluoroazomycinarabinoside ($^{18}F$-FAZA)-PET: A Review. Clin Nucl Med 2014;39:44-48. https://doi.org/10.1097/RLU.0000000000000286
  24. Hoigebazar L, Jeong JM, Lee Y-S, Hong MK, Kim YJ, Lee J-Y. Synthesis and evaluation of (AlF)-F-18-NODAnitroimidazole derivatives and their feasibility study as hypoxia PET agents. J Label Cmpd Radiopharm 2011, 54:S493 (suppl).
  25. Kumar P, Naimi E, McEwan AJ, Wiebe LI. Synthesis, radiofluorination, and hypoxia-selective studies of FRAZ: A configurational and positional analogue of the clinical hypoxia marker, [$^{18}F$]-FAZA. Bioorg Med Chem 2010;18:2255-2264. https://doi.org/10.1016/j.bmc.2010.01.064
  26. Mahy P, Geets X, Lonneux M, Leveque P, Christian N, De Bast M, Gillart J, Labar D, Lee J, Gregoire V. Determination of tumour hypoxia with [$^{18}F$]EF3 in patients with head and neck tumours: a phase I study to assess the tracer pharmacokinetics, biodistribution and metabolism. Eur J Nucl Med Mol Imaging 2008;35:1282-1289. https://doi.org/10.1007/s00259-008-0742-0
  27. Prekeges JL, Rasey JS, Grunbaum Z, Krohn KH. Reduction of fluoromisonidazole, a new imaging agent for hypoxia. Biochem Pharmacol 1991;42:2387-2395. https://doi.org/10.1016/0006-2952(91)90245-Z
  28. Hoigebazar L, Jeong JM, Choi SY, Choi JY, Shetty D, Lee Y-S, Lee DS, Chung JK, Lee MC, Chung YK. Synthesis and characterization of nitroimidazole derivatives for $^{68}Ga$-labeling and testing in tumor xenografted mice. J Med Chem 2010;53:6378-6385. https://doi.org/10.1021/jm100545a
  29. Hoigebazar L, Jeong JM, Hong MK, Kim YJ, Lee JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC. Synthesis of $^{68}Ga$-labeled DOTA-nitroimidazole derivatives and their feasibilities as hypoxia imaging PET tracers. Bioorg Med Chem 2011;19:2176-2181. https://doi.org/10.1016/j.bmc.2011.02.041
  30. Seelam SR, Lee JY, Lee Y-S, Hong MK, Kim YJ, Banka VK, Banka VK, Lee DS, Chung JK, Jeong JM. Development of 68Ga-labeled multivalent nitroimidazole derivatives for yypoxia imaging. Bioorg Med Chem 2015;23:7743-7750. https://doi.org/10.1016/j.bmc.2015.11.024
  31. Reischl G, Dorow DS, Cullinane C, Katsifis A, Roselt P, Binns D, Hicks RJ. Imaging of tumor hypoxia with [$^{124}I$] IAZA in comparison with [$^{18}F$]FMISO and [$^{18}F$]FAZA--first small animal PET results. J Pharm Pharm Sci 2007;10:203-211.
  32. Obata A, Kasamatsu S, Lewis JS, Furukawa T, Takamatsu S, Toyohara J, Asai T, Welch MJ, Adams SG, Saji H, Yonekura Y, Fujibayashi Y. Basic characterization of $^{64}Cu$-ATSM as a radiotherapy agent. Nucl Med Biol 2005;32:21-28. https://doi.org/10.1016/j.nucmedbio.2004.08.012
  33. Pavlik C, Biswal NC, Gaenzler FC, Morton MD, Kuhn LT, Claffey KP, Zhu Q, Smith MB. Synthesis and fluorescent characteristics of imidazole-indocyanine green conjugates. Dyes Pigments 2011;89:9-15. https://doi.org/10.1016/j.dyepig.2010.08.008
  34. Xu Y, Zanganeh S, Mohammad I, Aguirre A, Wang T, Yang Y, Kuhn L, Smith MB, Zhu Q. Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates. J Biomed Optics 2013;18:066009. https://doi.org/10.1117/1.JBO.18.6.066009
  35. Okuda K, Okabe Y, Kadonosono T, Ueno T, Youssif BG, Kizaka-Kondoh S, Nagasawa H. 2-Nitroimidazoletricarbocyanine conjugate as a near-infrared fluorescent probe for in vivo imaging of tumor hypoxia. Bioconjug Chem 2012;23:324-329. https://doi.org/10.1021/bc2004704
  36. Youssif BG, Okuda K, Kadonosono T, Salem OI, Hayallah AA, Hussein MA, Kizaka-Kondoh S, Nagasawa H. Development of a hypoxia-selective near-infrared fluorescent probe for non-invasive tumor imaging. Chem Pharm Bull 2012;60:402-407. https://doi.org/10.1248/cpb.60.402
  37. Stanford CL. Synthesis of half-loaded nitroimidazole indocyanine green dyes attached to carbon nanotubes. Master Science Thesis. 2012.
  38. Biswal NC, Pavlik C, Smith MB, Aguirre A, Xu Y, Zanganeh S, Kuhn LT, Claffey KP, Zhu Q. Imaging tumor hypoxia by near-infrared fluorescence tomography. J Biomed Optics 2011;16:066009--8.
  39. Kiyose K, Hanaoka K, Oushiki D, Nakamura T, Kajimura M, Suematsu M, Nishimatsu H, Yamane T, Terai T, Hirata Y, Nagano T. Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J Am Chem Soc 2010;132:15846-14848. https://doi.org/10.1021/ja105937q
  40. Piao W, Tsuda S, Tanaka Y, Maeda S, Liu F, Takahashi S, Kushida Y, Komatsu T, Ueno T, Terai T, Nakazawa T, Uchiyama M, Morokuma K, Nagano T, Hanaoka K. Development of azo-based fluorescent probes to detect different levels of hypoxia. Angew Chem Int Ed 2013;52:13028-13032. https://doi.org/10.1002/anie.201305784
  41. Zhang S, Hosaka M, Yoshihara T, Negishi K, Iida Y, Tobita S, Takeuchi T. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals. Ca Res 2010;70:4490-4498. https://doi.org/10.1158/0008-5472.CAN-09-3948
  42. Napp J, Behnke T, Fischer L, Wurth C, Wottawa M, Katschinski DrM, Alves F, Resch-Genger U, Schaferling M. Targeted luminescent near-infrared polymernanoprobes for in vivo imaging of tumor hypoxia. Anal Chem 2011;83:9039-9046. https://doi.org/10.1021/ac201870b
  43. Raleigh J, Chou S, Arteel G, and Horsman M. Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 1999;151:580-589. https://doi.org/10.2307/3580034
  44. Samoszuk MK, Walter J, and Mechetner E. Improved immunohistochemical method for detecting hypoxia gradients in mouse tissues and tumors. J Histochem Cytochem 2004;52:837-839. https://doi.org/10.1369/jhc.4B6248.2004
  45. Samoszuk M, Corwin MA. Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. Int J Ca 2003;107:159-163. https://doi.org/10.1002/ijc.11340
  46. Bache M, Kappler M, Said HM, Staab A, Vordermark D. Detection and specific targeting of hypoxic regions within solid tumors: current preclinical and clinical strategies. Curr Med Chem 2008;15:322-338. https://doi.org/10.2174/092986708783497391
  47. Gibbs SL. Near infrared fluorescence for image-guided surgery. Quan Imaging Med Surg 2012;2:177-187. https://doi.org/10.3978/j.issn.2223-4292.2012.09.04
  48. Baker KJ. Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma alpha-1 lipoproteins. Proc Soc Exp Bio Med 1966;122:957-963. https://doi.org/10.3181/00379727-122-31299
  49. Landsman M, Kwant G, Mook G, Zijlstra W. Lightabsorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 1976;40:575-583. https://doi.org/10.1152/jappl.1976.40.4.575
  50. Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med 2008;49:129S-48S. https://doi.org/10.2967/jnumed.107.045914
  51. Kizaka-Kondoh S, Inoue M, Harada H, and Hiraoka M. Tumor hypoxia: a target for selective cancer therapy. Ca Sci 2003;94:1021-1028. https://doi.org/10.1111/j.1349-7006.2003.tb01395.x
  52. Hoigebazar L, Jeong JM, Hong MK, Kim YJ, Lee JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC. Synthesis of 68Ga-labeled DOTA-nitroimidazole derivatives and their feasibilities as hypoxia imaging PET tracers. Bioorg Med Chem 2011;19:2176-2181. https://doi.org/10.1016/j.bmc.2011.02.041
  53. Kelada OJ, Carlson DJ. Molecular imaging of tumor hypoxia with positron emission tomography. Radiat Res 2014;181:335-349. https://doi.org/10.1667/RR13590.1
  54. Ntziachristos V. Fluorescence molecular imaging. Ann Rev Biomed Eng 2006;8:1-33. https://doi.org/10.1146/annurev.bioeng.8.061505.095831
  55. Zhang XF, Zhang J, Liu L. Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra. J Fluores 2014;24:819-826. https://doi.org/10.1007/s10895-014-1356-5
  56. Savarese M, Aliberti A, De Santo I, Battista E, Causa F, Netti PA, Rega N. Fluorescence lifetimes and quantum yields of rhodamine derivatives: New insights from theory and experiment. J Phys Chem 2012;116:7491-7497. https://doi.org/10.1021/jp3021485