References
- Nunn A, Linder K, Strauss HW. Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 1995;22:265-280. https://doi.org/10.1007/BF01081524
- Rauth A, Melo T, Misra V. Bioreductive therapies: an overview of drugs and their mechanisms of action. Int J Radiat Oncol Biol Phys 1998;42:755-762. https://doi.org/10.1016/S0360-3016(98)00302-2
- Takasawa M, Moustafa RR, Baron J-C. Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke 2008;39:1629-737. https://doi.org/10.1161/STROKEAHA.107.485938
-
Sorger D, Patt M, Kumar P, Wiebe LI, Barthel H, Seese A, Dannenberg C, Tannapfel A, Kluge R, Sabri O. [
$^{18}F$ ] Fluoroazomycinarabinofuranoside ($^{18}FAZA$ ) and [$^{18}F$ ] fuoromisonidazole ($^{18}FMISO$ ): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. Nucl Med Biol 2003;30:317-326. https://doi.org/10.1016/S0969-8051(02)00442-0 - Kizaka-Kondoh S, Konse-Nagasawa H. Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia. Ca Sci 2009;100:1366-1373. https://doi.org/10.1111/j.1349-7006.2009.01195.x
- Urano Y. Sensitive and selective tumor imaging with novel and highly activatable fluorescence probes. Anal Sci 2008;24:51-53. https://doi.org/10.2116/analsci.24.51
- Weissleder R, Mahmood U. Molecular imaging. Radiology 2001;219:316-333. https://doi.org/10.1148/radiology.219.2.r01ma19316
- Keereweer S, Kerrebijn JD, van Driel PB, Xie B, Kaijzel EL, Snoeks TJ, Que I, Hutteman M, van der Vorst JR, Mieog JS, Vahrmeijer AL, van de Velde CJ, Baatenburg de Jong RJ, Lowik CW. Optical image-guided surgery--where do we stand? Mol Imaging Biol 2011;13:199-207. https://doi.org/10.1007/s11307-010-0373-2
- Choi HS, Gibbs SL, Lee JH, Kim SH, Ashitate Y, Liu F, Hyun H, Park G, Xie Y, Bae S, Henary M, Frangioni JV. Targeted zwitterionic near-infrared fluorophores for improved optical imaging. Nat Biotech 2013;31:148-153. https://doi.org/10.1038/nbt.2468
- Schauenstein K, Schauenstein E, Wick G. Fluorescence properties of free and protein bound fluorescein dyes. I. Macrospectrofluorometric measurements. J Histochem Cytochem 1978;26:277-283. https://doi.org/10.1177/26.4.77868
- Hawkins DM, Trache A, Ellis EA, Stevenson D, Holzenburg A, Meininger GA, Reddy SM. Quantification and confocal imaging of protein specific molecularly imprinted polymers. Biomacromolecules 2006;7:2560-2564. https://doi.org/10.1021/bm060494d
- Bremer C, Ntziachristos V, Weissleder R. Optical-based molecular imaging: contrast agents and potential medical applications. Eur Radiol 2003;13:231-243. https://doi.org/10.1007/s00330-002-1610-0
- McCann TE, Kosaka N, Koide Y, Mitsunaga M, Choyke PL, Nagano T, Urano Y, Kobayashi H. Activatable optical imaging with a silica-rhodamine based near infrared (SiR700) fluorophore: a comparison with cyanine based dyes. Bioconjug. Chem 2011;22:2531-2538. https://doi.org/10.1021/bc2003617
- Lackowicz JR. Principles of fluorescence spectroscopy. Plenum Press,(New York, 1983) Chapter 1983;5:111-150.
- Mei L, Xiang Y, Li N, Tong A. A new fluorescent probe of rhodamine B derivative for the detection of copper ion. Talanta 2007;72:1717-1722. https://doi.org/10.1016/j.talanta.2007.02.002
- Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 2003;17:545-580. https://doi.org/10.1101/gad.1047403
- Brindle K. New approaches for imaging tumour responses to treatment. Nat Rev Ca 2008;8:94-107. https://doi.org/10.1038/nrc2289
- Jager HR, Taylor MN, Theodossy T, Hopper C. MR imaging-guided interstitial photodynamic laser therapy for advanced head and neck tumors. Am J Neuroradiol 2005;26:1193-1200.
- Chu T, Hu S, Wei B, Wang Y, Liu X, Wang X. Synthesis and biological results of the technetium-99m-labeled 4-nitroimidazole for imaging tumor hypoxia. Bioorg Med Chem Lett 2004;14:747-749. https://doi.org/10.1016/j.bmcl.2003.11.017
- Li Z, Zhang J, Jin Z, Zhang W, Zhang Y. Synthesis and biodistribution of novel 99mTc labeled 4-nitroimidazole dithiocarbamate complexes as potential agents to target tumor hypoxia. Med Chem Commun 2015;6:1143-1148. https://doi.org/10.1039/C5MD00042D
- Hoigebazar L, Jeong JM. Hypoxia Imaging Agents Labeled with Positron Emitters. Theranostics, Gallium-68, and Other Radionuclides: Springer; 2013, p. 285-299.
-
Dubois LJ, Lieuwes NG, Janssen MH, Peeters WJ, Windhorst AD, Walsh JC, Kolb HC, Ollers MC, Bussink J, van Dongen GA, van der Kogel A, Lambin P. Preclinical evaluation and validation of [
$^{18}F$ ] HX4, a promising hypoxia marker for PET imaging. Proc Nat Acad Sci 2011;108:14620-14625. https://doi.org/10.1073/pnas.1102526108 -
Halmos GB, Bruine de Bruin L, Langendijk JA, van der Laan BFAM, Pruim J, Steenbakkers RJHM. Head and neck tumor hypoxia imaging by
$^{18}F$ -fluoroazomycinarabinoside ($^{18}F$ -FAZA)-PET: A Review. Clin Nucl Med 2014;39:44-48. https://doi.org/10.1097/RLU.0000000000000286 - Hoigebazar L, Jeong JM, Lee Y-S, Hong MK, Kim YJ, Lee J-Y. Synthesis and evaluation of (AlF)-F-18-NODAnitroimidazole derivatives and their feasibility study as hypoxia PET agents. J Label Cmpd Radiopharm 2011, 54:S493 (suppl).
-
Kumar P, Naimi E, McEwan AJ, Wiebe LI. Synthesis, radiofluorination, and hypoxia-selective studies of FRAZ: A configurational and positional analogue of the clinical hypoxia marker, [
$^{18}F$ ]-FAZA. Bioorg Med Chem 2010;18:2255-2264. https://doi.org/10.1016/j.bmc.2010.01.064 -
Mahy P, Geets X, Lonneux M, Leveque P, Christian N, De Bast M, Gillart J, Labar D, Lee J, Gregoire V. Determination of tumour hypoxia with [
$^{18}F$ ]EF3 in patients with head and neck tumours: a phase I study to assess the tracer pharmacokinetics, biodistribution and metabolism. Eur J Nucl Med Mol Imaging 2008;35:1282-1289. https://doi.org/10.1007/s00259-008-0742-0 - Prekeges JL, Rasey JS, Grunbaum Z, Krohn KH. Reduction of fluoromisonidazole, a new imaging agent for hypoxia. Biochem Pharmacol 1991;42:2387-2395. https://doi.org/10.1016/0006-2952(91)90245-Z
-
Hoigebazar L, Jeong JM, Choi SY, Choi JY, Shetty D, Lee Y-S, Lee DS, Chung JK, Lee MC, Chung YK. Synthesis and characterization of nitroimidazole derivatives for
$^{68}Ga$ -labeling and testing in tumor xenografted mice. J Med Chem 2010;53:6378-6385. https://doi.org/10.1021/jm100545a -
Hoigebazar L, Jeong JM, Hong MK, Kim YJ, Lee JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC. Synthesis of
$^{68}Ga$ -labeled DOTA-nitroimidazole derivatives and their feasibilities as hypoxia imaging PET tracers. Bioorg Med Chem 2011;19:2176-2181. https://doi.org/10.1016/j.bmc.2011.02.041 - Seelam SR, Lee JY, Lee Y-S, Hong MK, Kim YJ, Banka VK, Banka VK, Lee DS, Chung JK, Jeong JM. Development of 68Ga-labeled multivalent nitroimidazole derivatives for yypoxia imaging. Bioorg Med Chem 2015;23:7743-7750. https://doi.org/10.1016/j.bmc.2015.11.024
-
Reischl G, Dorow DS, Cullinane C, Katsifis A, Roselt P, Binns D, Hicks RJ. Imaging of tumor hypoxia with [
$^{124}I$ ] IAZA in comparison with [$^{18}F$ ]FMISO and [$^{18}F$ ]FAZA--first small animal PET results. J Pharm Pharm Sci 2007;10:203-211. -
Obata A, Kasamatsu S, Lewis JS, Furukawa T, Takamatsu S, Toyohara J, Asai T, Welch MJ, Adams SG, Saji H, Yonekura Y, Fujibayashi Y. Basic characterization of
$^{64}Cu$ -ATSM as a radiotherapy agent. Nucl Med Biol 2005;32:21-28. https://doi.org/10.1016/j.nucmedbio.2004.08.012 - Pavlik C, Biswal NC, Gaenzler FC, Morton MD, Kuhn LT, Claffey KP, Zhu Q, Smith MB. Synthesis and fluorescent characteristics of imidazole-indocyanine green conjugates. Dyes Pigments 2011;89:9-15. https://doi.org/10.1016/j.dyepig.2010.08.008
- Xu Y, Zanganeh S, Mohammad I, Aguirre A, Wang T, Yang Y, Kuhn L, Smith MB, Zhu Q. Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates. J Biomed Optics 2013;18:066009. https://doi.org/10.1117/1.JBO.18.6.066009
- Okuda K, Okabe Y, Kadonosono T, Ueno T, Youssif BG, Kizaka-Kondoh S, Nagasawa H. 2-Nitroimidazoletricarbocyanine conjugate as a near-infrared fluorescent probe for in vivo imaging of tumor hypoxia. Bioconjug Chem 2012;23:324-329. https://doi.org/10.1021/bc2004704
- Youssif BG, Okuda K, Kadonosono T, Salem OI, Hayallah AA, Hussein MA, Kizaka-Kondoh S, Nagasawa H. Development of a hypoxia-selective near-infrared fluorescent probe for non-invasive tumor imaging. Chem Pharm Bull 2012;60:402-407. https://doi.org/10.1248/cpb.60.402
- Stanford CL. Synthesis of half-loaded nitroimidazole indocyanine green dyes attached to carbon nanotubes. Master Science Thesis. 2012.
- Biswal NC, Pavlik C, Smith MB, Aguirre A, Xu Y, Zanganeh S, Kuhn LT, Claffey KP, Zhu Q. Imaging tumor hypoxia by near-infrared fluorescence tomography. J Biomed Optics 2011;16:066009--8.
- Kiyose K, Hanaoka K, Oushiki D, Nakamura T, Kajimura M, Suematsu M, Nishimatsu H, Yamane T, Terai T, Hirata Y, Nagano T. Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J Am Chem Soc 2010;132:15846-14848. https://doi.org/10.1021/ja105937q
- Piao W, Tsuda S, Tanaka Y, Maeda S, Liu F, Takahashi S, Kushida Y, Komatsu T, Ueno T, Terai T, Nakazawa T, Uchiyama M, Morokuma K, Nagano T, Hanaoka K. Development of azo-based fluorescent probes to detect different levels of hypoxia. Angew Chem Int Ed 2013;52:13028-13032. https://doi.org/10.1002/anie.201305784
- Zhang S, Hosaka M, Yoshihara T, Negishi K, Iida Y, Tobita S, Takeuchi T. Phosphorescent light-emitting iridium complexes serve as a hypoxia-sensing probe for tumor imaging in living animals. Ca Res 2010;70:4490-4498. https://doi.org/10.1158/0008-5472.CAN-09-3948
- Napp J, Behnke T, Fischer L, Wurth C, Wottawa M, Katschinski DrM, Alves F, Resch-Genger U, Schaferling M. Targeted luminescent near-infrared polymernanoprobes for in vivo imaging of tumor hypoxia. Anal Chem 2011;83:9039-9046. https://doi.org/10.1021/ac201870b
- Raleigh J, Chou S, Arteel G, and Horsman M. Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 1999;151:580-589. https://doi.org/10.2307/3580034
- Samoszuk MK, Walter J, and Mechetner E. Improved immunohistochemical method for detecting hypoxia gradients in mouse tissues and tumors. J Histochem Cytochem 2004;52:837-839. https://doi.org/10.1369/jhc.4B6248.2004
- Samoszuk M, Corwin MA. Mast cell inhibitor cromolyn increases blood clotting and hypoxia in murine breast cancer. Int J Ca 2003;107:159-163. https://doi.org/10.1002/ijc.11340
- Bache M, Kappler M, Said HM, Staab A, Vordermark D. Detection and specific targeting of hypoxic regions within solid tumors: current preclinical and clinical strategies. Curr Med Chem 2008;15:322-338. https://doi.org/10.2174/092986708783497391
- Gibbs SL. Near infrared fluorescence for image-guided surgery. Quan Imaging Med Surg 2012;2:177-187. https://doi.org/10.3978/j.issn.2223-4292.2012.09.04
- Baker KJ. Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma alpha-1 lipoproteins. Proc Soc Exp Bio Med 1966;122:957-963. https://doi.org/10.3181/00379727-122-31299
- Landsman M, Kwant G, Mook G, Zijlstra W. Lightabsorbing properties, stability, and spectral stabilization of indocyanine green. J Appl Physiol 1976;40:575-583. https://doi.org/10.1152/jappl.1976.40.4.575
- Krohn KA, Link JM, Mason RP. Molecular imaging of hypoxia. J Nucl Med 2008;49:129S-48S. https://doi.org/10.2967/jnumed.107.045914
- Kizaka-Kondoh S, Inoue M, Harada H, and Hiraoka M. Tumor hypoxia: a target for selective cancer therapy. Ca Sci 2003;94:1021-1028. https://doi.org/10.1111/j.1349-7006.2003.tb01395.x
- Hoigebazar L, Jeong JM, Hong MK, Kim YJ, Lee JY, Shetty D, Lee YS, Lee DS, Chung JK, Lee MC. Synthesis of 68Ga-labeled DOTA-nitroimidazole derivatives and their feasibilities as hypoxia imaging PET tracers. Bioorg Med Chem 2011;19:2176-2181. https://doi.org/10.1016/j.bmc.2011.02.041
- Kelada OJ, Carlson DJ. Molecular imaging of tumor hypoxia with positron emission tomography. Radiat Res 2014;181:335-349. https://doi.org/10.1667/RR13590.1
- Ntziachristos V. Fluorescence molecular imaging. Ann Rev Biomed Eng 2006;8:1-33. https://doi.org/10.1146/annurev.bioeng.8.061505.095831
- Zhang XF, Zhang J, Liu L. Fluorescence properties of twenty fluorescein derivatives: lifetime, quantum yield, absorption and emission spectra. J Fluores 2014;24:819-826. https://doi.org/10.1007/s10895-014-1356-5
- Savarese M, Aliberti A, De Santo I, Battista E, Causa F, Netti PA, Rega N. Fluorescence lifetimes and quantum yields of rhodamine derivatives: New insights from theory and experiment. J Phys Chem 2012;116:7491-7497. https://doi.org/10.1021/jp3021485