DOI QR코드

DOI QR Code

테트라포드 피복 케이슨 방파제 파압 수치모의를 위한 투수층 경험계수 산정

Evaluation of Empirical Porous-Media Parameters for Numerical Simulation of Wave Pressure on Caisson Breakwater Armored with Tetrapods

  • 이건세 (한양대학교 건설환경시스템공학과) ;
  • 오상호 (한국해양과학기술원 연안공학연구본부) ;
  • 윤성범 (한양대학교 건설환경공학과)
  • Lee, Geun Se (Dept. of Civil & Env. System Engrg, Graduate School, Hanyang University) ;
  • Oh, Sang-Ho (Coastal Engineering Division, Korea Institute of Ocean Science and Technology) ;
  • Yoon, Sung Bum (Dept. of Civil, & Env. Engrg, ERICA Campus, Hanyang University)
  • 투고 : 2019.11.18
  • 심사 : 2019.12.05
  • 발행 : 2019.12.31

초록

본 연구에서는 3차원 유동해석 수치모형인 OpenFOAM의 waves2Foam을 사용하여 무공케이슨 방파제의 전면이 피복되지 않은 조건과 테트라포드(TTP)로 피복된 조건에서 직립 케이슨에 작용하는 파압을 수치모의하고 수리실험 결과와 비교하였다. 파압 수치모의 결과는 수리실험 결과와 상당히 잘 일치하였다. 이를 통해 테트라포드로 피복된 영역을 다공성 매체로 구현할 수 있는 경험식의 최적 파라미터 조합을 제시하였다.

In this study, waves2Foam implemented in OpenFOAM is used to simulate numerically the wave pressure on a verical caisson under the condition of with and without the placement of Tetrapods in front of the caisson. The comparisons of the numerical results and the experimental data show fairly good agreement between them. Based on this, it is possible to suggest an optimal combination of coefficients for an empirical formula to represent the protective TTP layer as porous media.

키워드

참고문헌

  1. Conde, J.M.P. (2019). Comparison of different methods for generation and absorption of water waves. Revista de Engenharia Termica, 18(1), 71. https://doi.org/10.5380/reterm.v18i1.67053
  2. Dentale, F., Donnarumma, G. and Carratelli, E.P. (2014). Numerical wave interaction with tetrapods breakwater. International Journal of Naval Architecture and Ocean Engineering, 6(4), 800-812. https://doi.org/10.2478/IJNAOE-2013-0214
  3. Engsig-Karup, A. (2006). Unstructured Nodal DG-FEM Solution of High-Order Boussinesq-Type Equations. Ph.D. thesis, Technical University of Denmark.
  4. Fuhrman, D.R., Madsen, P.A. and Bingham, H.B. (2006). Numerical simulation of lowest-order short-crested wave instabilities. Journal of Fluid Mechanics, 563, 415-441. https://doi.org/10.1017/S0022112006001236
  5. Guanche, R., Iturrioz, A. and Losada, I.J. (2015). Hybrid modeling of pore pressure damping in rubble mound breakwaters. Coastal Engineering, 99, 82-95. https://doi.org/10.1016/j.coastaleng.2015.02.001
  6. Hanzawa, M., Matsumoto, A. and Tanaka, H. (2010). Study on detached breakwaters'effect on tsunami disaster mitigation by numerical wave flume. Journal of Applied Mechanics: JSCE, 13, 797-804 (in Japanese).
  7. Higuera, P., Lara, J.L. and Losada, I.J. (2013). Realistic wave generation and active wave absorption for Navier-Stokes models: Application to OpenFOAM${(R)}$, Coastal Engineering, 71, 102-118. https://doi.org/10.1016/j.coastaleng.2012.07.002
  8. Higuera, P., Losada, I.J. and Lara, J.L. (2015). Three-dimensional numerical wave generation with moving boundaries. Coastal Engineering, 101, 35-47. https://doi.org/10.1016/j.coastaleng.2015.04.003
  9. Jacobsen, N.G., Fuhrman, D.R. and Fredsoe, J. (2012). A wave generation toolbox for the open-source CFD library: Open- Foam${(R)}$. International Journal for Numerical Methods in Fluids, 70(9), 1073-1088. https://doi.org/10.1002/fld.2726
  10. Jensen, B., Jacobsen, N.G. and Christensen, E.D. (2014). Investigations on the porous media equations and resistance coefficients for coastal structures. Coastal Engineering, 84, 56-72. https://doi.org/10.1016/j.coastaleng.2013.11.004
  11. Le Mehaute, B. (1969). An introduction to hydrodynamics and water waves. water wave theories, 2, U.S. Department of Commerce, ESSSA, Washington.
  12. Liu, P.L.F., Lin, P., Chang, K.A. and Sakakiyama, T. (1999). Numerical modeling of wave interaction with porous structures. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125(6), 322-330. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:6(322)
  13. Oh, S.-H. and Lee, D.S. (2018). Two-dimensional wave flume with water circulating system for controlling water level. Journal of Korean Society of Coastal and Ocean Engineers, 30(6), 337-342 (in Korean). https://doi.org/10.9765/KSCOE.2018.30.6.337
  14. Shin, C.H. and Yoon, S.B. (2018). A numerical study on flow porous structure using non-hydrostatic model. Journal of Korean Society of Coastal and Ocean Engineers, 30(3), 114-122 (in Korean). https://doi.org/10.9765/KSCOE.2018.30.3.114
  15. Van Gent, M.R.A. (1995). Porous Flow through rubble mound material. Journal of Waterway, Port, Coastal and Ocean Engineering, 121(3), 176-181. https://doi.org/10.1061/(ASCE)0733-950X(1995)121:3(176)