DOI QR코드

DOI QR Code

Tetrabromobisphenol A Induces MMP-9 Expression via NADPH Oxidase and the activation of ROS, MAPK, and Akt Pathways in Human Breast Cancer MCF-7 Cells

  • Lee, Gi Ho (Department of Toxicology, College of Pharmacy, Chungnam National University) ;
  • Jin, Sun Woo (Department of Toxicology, College of Pharmacy, Chungnam National University) ;
  • Kim, Se Jong (Department of Toxicology, College of Pharmacy, Chungnam National University) ;
  • Pham, Thi Hoa (Department of Toxicology, College of Pharmacy, Chungnam National University) ;
  • Choi, Jae Ho (Department of Toxicology, College of Pharmacy, Chungnam National University) ;
  • Jeong, Hye Gwang (Department of Toxicology, College of Pharmacy, Chungnam National University)
  • 투고 : 2018.10.31
  • 심사 : 2018.11.06
  • 발행 : 2019.01.15

초록

Tetrabromobisphenol A (TBBPA), the most common industrial brominated flame retardant, acts as a cytotoxic, neurotoxic, and immunotoxicant, causing inflammation and tumors. However, the mechanism of TBBPA-induced matrix metalloproteinase-9 (MMP-9) expression in human breast cancer cells is not clear. In human breast cancer MCF-7 cells, treatment with TBBPA significantly induced the expression and promoter activity of MMP-9. Transient transfection with MMP-9 mutation promoter constructs verified that $NF-{\kappa}B$ and AP-1 response elements are responsible for the effects of TBBPA. Furthermore, TBBPA-induced MMP-9 expression was mediated by $NF-{\kappa}B$ and AP-1 transcription activation as a result of the phosphorylation of the Akt and MAPK signaling pathways. Moreover, TBBPA-induced activation of Akt/MAPK pathways and MMP-9 expression were attenuated by a specific NADPH oxidase inhibitor, and the ROS scavenger. These results suggest that TBBPA can induce cancer cell metastasis by releasing MMP-9 via ROS-dependent MAPK, and Akt pathways in MCF-7 cells.

키워드

참고문헌

  1. de Wit, C.A. (2002) An overview of brominated flame retardants in the environment. Chemosphere, 46, 583-624. https://doi.org/10.1016/S0045-6535(01)00225-9
  2. Berger, U., Herzke, D. and Sandanger, T.M. (2004) Two trace analytical methods for determination of hydroxylated PCBs and other halogenated phenolic compounds in eggs from Norwegian birds of prey. Anal. Chem., 76, 441-452. https://doi.org/10.1021/ac0348672
  3. Birnbaum, L.S. and Staskal, D.F. (2004) Brominated flame retardants: cause for concern? Environ. Health Perspect., 112, 9-17. https://doi.org/10.1289/ehp.6559
  4. Morris, S., Allchin, C.R., Zegers, B.N., Haftka, J.J., Boon, J.P., Belpaire, C., Leonards, P.E., Van Leeuwen, S.P. and De Boer, J. (2004) Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs. Environ. Sci. Technol., 38, 5497-5504. https://doi.org/10.1021/es049640i
  5. Saint-Louis, R. and Pelletier, E. (2004) LC-ESI-MS-MS method for the analysis of tetrabromobisphenol A in sediment and sewage sludge. Analyst, 129, 724-730. https://doi.org/10.1039/b400743n
  6. Darnerud, P.O. (2003) Toxic effects of brominated flame retardants in man and in wildlife. Environ. Int., 29, 841-853. https://doi.org/10.1016/S0160-4120(03)00107-7
  7. Kitamura, S., Suzuki, T., Sanoh, S., Kohta, R., Jinno, N., Sugihara, K., Yoshihara, S., Fujimoto, N., Watanabe, H. and Ohta, S. (2005) Comparative study of the endocrine-disrupting activity of bisphenol A and 19 related compounds. Toxicol. Sci., 84, 249-259. https://doi.org/10.1093/toxsci/kfi074
  8. Pullen, S., Boecker, R. and Tiegs, G. (2003) The flame retardants tetrabromobisphenol A and tetrabromobisphenol Abisallylether suppress the induction of interleukin-2 receptor alpha chain (CD25) in murine splenocytes. Toxicology, 184, 11-22. https://doi.org/10.1016/S0300-483X(02)00442-0
  9. Reistad, T., Mariussen, E. and Fonnum, F. (2005) The effect of a brominated flame retardant, tetrabromobisphenol-A, on free radical formation in human neutrophil granulocytes: the involvement of the MAP kinase pathway and protein kinase C. Toxicol. Sci., 83, 89-100. https://doi.org/10.1093/toxsci/kfh298
  10. Bruschi, F., Bianchi, C., Fornaro, M., Naccarato, G., Menicagli, M., Gomez-Morales, M.A., Pozio, E. and Pinto, B. (2014) Matrix metalloproteinase (MMP)-2 and MMP-9 as inflammation markers of Trichinella spiralis and Trichinella pseudospiralis infections in mice. Parasite Immunol., 36, 540-549. https://doi.org/10.1111/pim.12138
  11. Jadhav, U., Chigurupati, S., Lakka, S.S. and Mohanam, S. (2004) Inhibition of matrix metalloproteinase-9 reduces in vitro invasion and angiogenesis in human microvascular endothelial cells. Int. J. Oncol., 25, 1407-1414.
  12. Roy, R., Yang, J. and Moses, M.A. (2009) Matrix metalloproteinases as novel biomarkers and potential therapeutic targets in human cancer. J. Clin. Oncol., 27, 5287-5297. https://doi.org/10.1200/JCO.2009.23.5556
  13. Yu, W., Liu, J., Xiong, X., Ai, Y. and Wang, H. (2009) Expression of MMP9 and CD147 in invasive squamous cell carcinoma of the uterine cervix and their implication. Pathol. Res. Pract., 205, 709-715. https://doi.org/10.1016/j.prp.2009.05.010
  14. Scully, O.J., Bay, B.H., Yip, G. and Yu, Y. (2012) Breast cancer metastasis. Cancer Genomics Proteomics, 9, 311-320.
  15. Blanckaert, V., Ulmann, L., Mimouni, V., Antol, J., Brancquart, L. and Chenais, B. (2010) Docosahexaenoic acid intake decreases proliferation, increases apoptosis and decreases the invasive potential of the human breast carcinoma cell line MDA-MB-231. Int. J. Oncol., 36, 737-742.
  16. McGowan, P.M. and Duffy, M.J. (2008) Matrix metalloproteinase expression and outcome in patients with breast cancer: analysis of a published database. Ann. Oncol., 19, 1566-1572. https://doi.org/10.1093/annonc/mdn180
  17. Genersch, E., Hayess, K., Neuenfeld, Y. and Haller, H. (2000) Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and -independent pathways. J. Cell Sci., 113 Pt 23, 4319-4330. https://doi.org/10.1242/jcs.113.23.4319
  18. Hong, S., Park, K.K., Magae, J., Ando, K., Lee, T.S., Kwon, T.K., Kwak, J.Y., Kim, C.H. and Chang, Y.C. (2005) Ascochlorin inhibits matrix metalloproteinase-9 expression by suppressing activator protein-1-mediated gene expression through the ERK1/2 signaling pathway: inhibitory effects of ascochlorin on the invasion of renal carcinoma cells. J. Biol. Chem., 280, 25202-25209. https://doi.org/10.1074/jbc.M413985200
  19. Mook, O.R., Frederiks, W.M. and Van Noorden, C.J. (2004) The role of gelatinases in colorectal cancer progression and metastasis. Biochim. Biophys. Acta, 1705, 69-89.
  20. Garg, A. and Aggarwal, B.B. (2002) Nuclear transcription factor-kappaB as a target for cancer drug development. Leukemia, 16, 1053-1068. https://doi.org/10.1038/sj.leu.2402482
  21. Maraldi, T., Angeloni, C., Giannoni, E. and Sell, C. (2015) Reactive oxygen species in stem cells. Oxid. Med. Cell. Longev., 2015, 159080.
  22. Panday, A., Sahoo, M.K., Osorio, D. and Batra, S. (2015) NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell. Mol. Immunol., 12, 5-23. https://doi.org/10.1038/cmi.2014.89
  23. Cai, H. and Harrison, D.G. (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ. Res., 87, 840-844. https://doi.org/10.1161/01.RES.87.10.840
  24. Brown, D.I. and Griendling, K.K. (2009) Nox proteins in signal transduction. Free Radic. Biol. Med., 47, 1239-1253. https://doi.org/10.1016/j.freeradbiomed.2009.07.023
  25. Giles, G.I. (2006) The redox regulation of thiol dependent signaling pathways in cancer. Curr. Pharm. Des., 12, 4427-4443. https://doi.org/10.2174/138161206779010549
  26. Manea, S.A., Constantin, A., Manda, G., Sasson, S. and Manea, A. (2015) Regulation of Nox enzymes expression in vascular pathophysiology: Focusing on transcription factors and epigenetic mechanisms. Redox. Biol., 5, 358-366. https://doi.org/10.1016/j.redox.2015.06.012
  27. Morgan, M.J. and Liu, Z.G. (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res., 21, 103-115. https://doi.org/10.1038/cr.2010.178
  28. Reddy, S.A., Huang, J.H. and Liao, W.S. (2000) Phosphatidylinositol 3-kinase as a mediator of TNF-induced NFkappa B activation. J. Immunol., 164, 1355-1363. https://doi.org/10.4049/jimmunol.164.3.1355
  29. Woo, J.H., Lim, J.H., Kim, Y.H., Suh, S.I., Min, D.S., Chang, J.S., Lee, Y.H., Park, J.W. and Kwon, T.K. (2004) Resveratrol inhibits phorbol myristate acetate-induced matrix metalloproteinase-9 expression by inhibiting JNK and PKC delta signal transduction. Oncogene, 23, 1845-1853. https://doi.org/10.1038/sj.onc.1207307
  30. Jiang, F., Zhang, Y. and Dusting, G.J. (2011) NADPH oxidasemediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol. Rev., 63, 218-242. https://doi.org/10.1124/pr.110.002980
  31. Han, E.H., Park, J.H., Kang, K.W., Jeong, T.C., Kim, H.S. and Jeong, H.G. (2009) Risk assessment of tetrabromobisphenol A on cyclooxygenase-2 expression via MAP kinase/NF-kappaB/AP-1 signaling pathways in murine macrophages. J. Toxicol. Environ. Health A, 72, 1431-1438. https://doi.org/10.1080/15287390903212873
  32. Perkins, N.D. (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat. Rev. Mol. Cell Biol., 8, 49-62. https://doi.org/10.1038/nrm2083
  33. Sato, T., Koike, L., Miyata, Y., Hirata, M., Mimaki, Y., Sashida, Y., Yano, M. and Ito, A. (2002) Inhibition of activator protein-1 binding activity and phosphatidylinositol 3-kinase pathway by nobiletin, a polymethoxy flavonoid, results in augmentation of tissue inhibitor of metalloproteinases-1 production and suppression of production of matrix metalloproteinases-1 and -9 in human fibrosarcoma HT-1080 cells. Cancer Res., 62, 1025-1029.
  34. Cho, H.J., Kang, J.H., Kwak, J.Y., Lee, T.S., Lee, I.S., Park, N.G., Nakajima, H., Magae, J. and Chang, Y.C. (2007) Ascofuranone suppresses PMA-mediated matrix metalloproteinase-9 gene activation through the Ras/Raf/MEK/ERK- and Ap1-dependent mechanisms. Carcinogenesis, 28, 1104-1110. https://doi.org/10.1093/carcin/bgl217
  35. Karin, M., Liu, Z. and Zandi, E. (1997) AP-1 function and regulation. Curr. Opin. Cell Biol., 9, 240-246. https://doi.org/10.1016/S0955-0674(97)80068-3
  36. Chang, Y.C., Li, P.C., Chen, B.C., Chang, M.S., Wang, J.L., Chiu, W.T. and Lin, C.H. (2006) Lipoteichoic acid-induced nitric oxide synthase expression in RAW 264.7 macrophages is mediated by cyclooxygenase-2, prostaglandin E2, protein kinase A, p38 MAPK, and nuclear factor-kappaB pathways. Cell. Signal., 18, 1235-1243. https://doi.org/10.1016/j.cellsig.2005.10.005
  37. Fonnum, F., Mariussen, E. and Reistad, T. (2006) Molecular mechanisms involved in the toxic effects of polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs). J. Toxicol. Environ. Health A, 69, 21-35. https://doi.org/10.1080/15287390500259020
  38. Reistad, T., Mariussen, E., Ring, A. and Fonnum, F. (2007) In vitro toxicity of tetrabromobisphenol-A on cerebellar granule cells: cell death, free radical formation, calcium influx and extracellular glutamate. Toxicol. Sci., 96, 268-278. https://doi.org/10.1093/toxsci/kfl198