DOI QR코드

DOI QR Code

A Study on Passive Homing Trajectory for Maximizing Target Information

표적 정보량을 최대화하는 피동 호밍궤적에 관한 고찰

  • Ra, Won-Sang (School of Mechanical and Control Engineering, Handong Global University) ;
  • Shin, Hyo-Sang (School of Aerospace, Transport and Manufacturing, Cranfield University) ;
  • Jung, Bo-Young (School of Mechanical and Control Engineering, Handong Global University) ;
  • Whang, Ick-Ho (Department of Precision Guidance Control Technology, Agency for Defense Development)
  • Received : 2018.12.03
  • Accepted : 2018.12.22
  • Published : 2019.01.01

Abstract

This paper deals with the problem of generating the energy optimal trajectory which is intended to enhance the target tracking performance of a passive homing missile. Noticing that the essence of passive target tracking is the range estimation problem, the target information gathered by passive measurements can be readily analyzed by introducing the range estimator designed in line-of-sight(LOS) frame. Moreover, for the linear filter structure of the suggested range estimator, the cost function associated with the target information is clearly expressed as a function of the line-of-sight rate. Based on this idea, the optimal missile trajectory maximizing the target information is obtained by solving the saddle point problem for an indefinite quadratic cost which consists of the target information and the energy. It is shown that, different from the previous heuristic approaches, the guidance command producing the optimal passive homing trajectory is produced by the modified proportional navigation guidance law whose navigation constant is determined by the weighting coefficient for target information cost.

Keywords

DHJGII_2019_v68n1_172_f0001.png 이미지

그림 1 호밍 유도기하 Fig. 1 Engagement geometry

DHJGII_2019_v68n1_172_f0002.png 이미지

그림 2 측정치 종류에 따른 상대거리 정보량 확보문제 Fig. 2 Range accuracy according to measurements.

DHJGII_2019_v68n1_172_f0003.png 이미지

그림 3 가중계수 ω2에 따른 호밍 유도궤적 Fig. 3 Trajectory according to weighting factor ω2

DHJGII_2019_v68n1_172_f0004.png 이미지

그림 4 유도기법에 따른 호밍 유도궤적 Fig. 4 Trajectory according to guidance laws

DHJGII_2019_v68n1_172_f0005.png 이미지

그림 5 정보량 획득 효율성 Fig. 5 Efficiency of information acquisition

DHJGII_2019_v68n1_172_f0006.png 이미지

그림 6 상대거리 추정성능 Fig. 6 Range estimation performance.

DHJGII_2019_v68n1_172_f0007.png 이미지

그림 7 초기 헤딩오차에 대한 RMSE Fig. 7 RMSE for heading error.

표 1 시변 Hamiltonian 시스템의 해석 해 Table 1 Analytic solution of Hamiltonian system

DHJGII_2019_v68n1_172_t0001.png 이미지

표 2 계수 ck, dk간의 관계 Table 2 Relationship between the coefficients ck and dk

DHJGII_2019_v68n1_172_t0002.png 이미지

표 3 표적 요격조건 충족을 위한 고려사항 Table 3 Consideration for meeting the intercept condition

DHJGII_2019_v68n1_172_t0003.png 이미지

표 4 모의실험 조건 Table 4 Simulation conditions

DHJGII_2019_v68n1_172_t0004.png 이미지

References

  1. Hull, D. G. Speyer, J. L., and Burris, D. B., "Linearquadratic guidance law for dual control of homing missiles", J. Guidance, 1990, pp. 137-144.
  2. Hepener, S. A. R,, and Geering, H. P., "Observability analysis for target maneuver estimation via bearing- only and bearing-rate-only measurements", J. Guidance, 1990, pp. 977-983.
  3. Kirk, D. E., Optimal control theory, an introduction, Prentice Hall, 1970.
  4. Song, T.L. and Um, T.Y., "Practical guidance for homing missiles with bearings-only measurements", IEEE Trans. Aero. Electr. Sys. 1996, pp. 434-443.
  5. Lee, C. H., Kim, T. H., and Tahk, M. J., "Biased PNG for target observability enhancement against nonmaneuvering targets", IEEE Trans. Aero. Electr. Sys., 2015, pp. 2-17.
  6. Shin, H. S., Lee, J. I., Cho, H. J. and Tsourdos, A., "Trajectroy modulation guidance law for anti-ship missiles", AIAA Guidance, Navigation and Control Conf., 2011.
  7. Whang, I. H., Ra, W.S. and Ahn, J. Y., "A modified weighted least squares range estimator for ASM (antiship missile) application", Int. J. Control, Automation, Sys., 2005, pp. 486-492.
  8. Ra, W.S., Whang, I.H., and J.Y. Ahn, "Robust horizontal line-of-sight rate estimator for sea skimming anti-ship missile with two-axis gimballed seeker", IET Radar, Sonar, Nav., 2005, pp. 9-15. https://doi.org/10.1049/iet-rsn.2012.0359
  9. T. L. Song and J. L. Speyer, "A stochastic analysis of a modified extended Kalman filter with application to estimation with bearings only measurements", IEEE Trans. Automat. Contr., 1985, pp. 940-949.
  10. Moorman, M. J., and Bullock, T. E., "A new estimator for passive tracking of maneuvering targets", Proc. IEEE. Conf. Control Appl., 1992.
  11. Moorman, M. J., and Bullock, T. E., "Empirical evidence of bias in extended Kalman filters used for passive target tracking", Proc. IEEE National Aero. Electron. Conf., 1992.
  12. Ra, W. S., Whang, I. H. and Park, J. B., "Nonconservative robust Kalman filtering using a noisy measurement matrix", IET Control Theory Appl., 2009. pp. 1226-1236.