DOI QR코드

DOI QR Code

A Study on the Design of Correction Filter for High-Speed Guided Missile Firing from Warship after Transfer Alignment

전달정렬 함상 발사 고속 유도무기의 보정필터 설계에 대한 연구

  • Received : 2018.11.23
  • Accepted : 2018.12.24
  • Published : 2019.01.01

Abstract

This paper presents the study results on the design of the correction filter to improve the azimuth error estimation of the high-speed guided missile launched from the warship after the transfer alignment. We theoretically proved that the transfer alignment performance is determined by the accuracy of the marine inertial navigation system and the observability of the attitude error state variable in the transfer alignment filter, and that most of navigation errors in high-speed guided missile are caused by azimuth error. In order to improve the azimuth estimation performance of the correction filter, the multiple adaptive estimation method and the adaptive filters adapting the measurement noise covariance or the process noise covariance are proposed. The azimuth estimation performance of the proposed adaptive filter and the existing Kalman filter are compared and analyzed each other for 8 different transfer alignment accuracy cases. As a result of comparison and analysis, it was confirmed that the adaptive filter adapting the process noise covariance has the best azimuth estimation performance. These results can be applied to the design of correction filters for high-speed guided missile.

Keywords

DHJGII_2019_v68n1_108_f0001.png 이미지

그림 1 다중모델 적응 필터의 블록 다이어그램 Fig. 1 Block diagram of multiple model adaptive estimation(MMAE)

DHJGII_2019_v68n1_108_f0002.png 이미지

그림 2 X축 비정렬 각 추정치 Fig. 2 Estimation of X-Axis Misalignment Angle

DHJGII_2019_v68n1_108_f0003.png 이미지

그림 3 Y축 비정렬 각 추정치 Fig. 3 Estimation of Y-Axis Misalignment Angle

DHJGII_2019_v68n1_108_f0004.png 이미지

그림 4 Z축 비정렬 각 추정치 Fig. 4 Estimation of Z-Axis Misalignment Angle

DHJGII_2019_v68n1_108_f0005.png 이미지

그림 5 Sim1의 보정필터 방위각 오차 추정성능 시뮬레이션 결과 Fig. 5 Simulation result of heading error estimation performance of correction filter for Sim1

DHJGII_2019_v68n1_108_f0006.png 이미지

그림 6 Sim2의 보정필터 방위각 오차 추정성능 시뮬레이션 결과 Fig. 6 Simulation result of heading error estimation performance of correction filter for Sim2

DHJGII_2019_v68n1_108_f0007.png 이미지

그림 7 Sim3의 보정필터 방위각 오차 추정성능 시뮬레이션 결과 Fig. 7 Simulation result of heading error estimation performance of correction filter for Sim3

DHJGII_2019_v68n1_108_f0008.png 이미지

그림 8 Sim4의 보정필터 방위각 오차 추정성능 시뮬레이션 결과 Fig. 8 simulation result of heading error estimation performance of correction filter for Sim4

DHJGII_2019_v68n1_108_f0009.png 이미지

그림 9 Sim5의 보정필터 방위각 오차 추정성능 시뮬레이션 결과 Fig. 9 Simulation result of heading error estimation performance of correction filter for Sim5

DHJGII_2019_v68n1_108_f0010.png 이미지

그림 10 Sim6의 보정필터 방위각 오차 추정성능 시뮬레이션 결과 Fig. 10 Simulation result of heading error estimation performance of correction filter for Sim6

DHJGII_2019_v68n1_108_f0011.png 이미지

그림 11 Sim7의 보정필터 방위각 오차 추정성능 시뮬레이션 결과 Fig. 11 Simulation result of heading error estimation performance of correction filter for Sim7

DHJGII_2019_v68n1_108_f0012.png 이미지

그림 12 Sim8의 보정필터 방위각 오차 추정성능 시뮬레이션 결과 Fig. 12 Simulation result of heading error estimation performance of correction filter for Sim8

표 1 시뮬레이션 위한 전달정렬 정확도 조건 Table 1 Accuracy Condition of Tranfer Alignment for Simulation

DHJGII_2019_v68n1_108_t0001.png 이미지

표 2 해외 함정용 관성항법장치 정확도 Table 2 Accuracy Specifications of Overseas Ship’s Inertial Navigation System

DHJGII_2019_v68n1_108_t0002.png 이미지

표 3 3개의 다중모델 적응 필터 초기 공분산 Table 3 Initial Error Covariance of MMAE

DHJGII_2019_v68n1_108_t0003.png 이미지

표 4 성능분석 대상 보정필터 Table 4 Correction Filter for Performance Analysis

DHJGII_2019_v68n1_108_t0004.png 이미지

표 5 Sim1/2에 대한 보정필터 방위각 오차 추정 성능 Table 5 Heading error estimation performance of correction filter for Sim1/2

DHJGII_2019_v68n1_108_t0005.png 이미지

표 6 Sim3/4에 대한 보정필터 방위각 오차 추정 성능 Table 6 Heading error estimation performance of correction filter for Sim3/4

DHJGII_2019_v68n1_108_t0006.png 이미지

표 7 Sim5/6에 대한 보정필터 방위각 오차 추정 성능 Table 7 Heading error estimation performance of correction filter for Sim5/6

DHJGII_2019_v68n1_108_t0007.png 이미지

표 8 Sim7/8에 대한 보정필터 방위각 오차 추정 성능 Table 8 Heading error estimation performance of correction filter for Sim7/8

DHJGII_2019_v68n1_108_t0008.png 이미지

References

  1. D. Titterton and J. Weston, "Strapdown Inertial Navigation Technology", Peter Peregrinus Ltd., 1997.
  2. A. Schneider, "Kalman Filter Formulations for Transfer Alignment of Strapdown Inertial Units", J. of the Institute of the Navigation, Vol. 30, spring 1983.
  3. K. Spalding, "An Efficient Rapid Transfer Alignment Filter", Proc. of the AIAA GN&C Conference, 1992.
  4. J. E. Kain, J. R. Cloutier, "Rapid Transfer Alignmentfor Transfer Weapon Application", Proc. of the AIAA GN&C Conference, 1989.
  5. N. M. Vepa, "A Dynamic Alignment System for Applications on Flexible Platforms such as Ships", Gyro Technology, 1989.
  6. P. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House, 2013.
  7. D. Goshen-Meskin and I. Bar-Itzhack, "Observability Analysis of Piece-Wise Constant Systems, Part II : Application to Inertial Navigation In-Flight Alignment", IEEE Trans. on Aerospace and Electronic Systems, Vol. 28, No. 4, 1992.
  8. E. Levinson, J. Horst and M. Willcocks, "The Next Generation Marine Inertial Navigation is Here Now", Proceedings of IEEE PLANS 1994.
  9. iXBlue, "MARINS M-Series Technical Specifications", 2016.
  10. Northrop Grumman, "MK39 MOD 4A Ring Laser", 2016.
  11. Safran, "SIGMA 40XP Inertial Navigation System for Submarines", 2009.
  12. Safran, "SIGMA 40 Attitude & Heading Reference System Inertial Navigation System", 2010
  13. Raytheon, "MINS 2 Marine Inertial Navigation System", 2010.
  14. Kearfott, "SEANAV Inertial Navigation System", 2008.
  15. Honeywell, "Laseref Marine Inertial Navigation System", 2012.
  16. C. Hide, T. Moore and M. Smith, "Adaptive Kalman Filtering for Integrating Low-cost INS/GPS", The J. of Navigation, Vol. 56, 2003.
  17. W. Ding, J. Wang and C. Rizos, "Improving Adaptive Kalman Estimation in GPS/INS Integration", The J. of Navigation, Vol. 60, 2007.
  18. A. Mohamed and K. Schwarz, "Adaptive Kalman Filtering for INS/GPS", J. of Geodesy, Vol. 73, 1999.
  19. M. Yu, "INS/GPS Integration System Using Adaptive Filter for Estimating Measurement Noise Variance", IEEE Trans. on Aerospace and Electronic Systems, Vol. 48, April 2012.
  20. E. D. Kaplan, Understanding GPS : Principles and Applications, Artech House, 1996.
  21. P. S. Maybeck, Stochastic Models, Estimation and Control Vol. 1, Academic Press, 1979.
  22. P. S. Maybeck, Stochastic Models, Estimation and Control Vol. 2, Academic Press, 1982.
  23. Bar-Shalom, X. Lee and T. Kirubarajan, Estimation with Application to Tracking and Navigation, John Wiley & Sons, Inc., 2001.
  24. G. M. Siouris, "Aerospace Avionics Systems : A Modern Synthesis", Academic Press, Inc. 1993.
  25. M. M. Kuritsky and M. S. Goldstein, "Inertial Navigation", Proceedings of the IEEE, Vol. 71, No. 10, Oct. 1983.
  26. K. R. Britting, "Inertial Navigation System Analysis", Wiley-Interscience, 1971.
  27. R. Mehra, "On the Identification of Variance and Adaptive Kalman Filtering", IEEE Trans. on Automatic Control, Vol. AC-15, No. 2, April 1970.
  28. R. Mehra, "Approaches to Adaptive Filtering", IEEE Trans. on Automatic Control, Oct. 1972.
  29. L. Hostetler and R. Andreas, "Nonlinear Kalman Filtering Techniques for Terrain-Aided Navigation", IEEE Trans. on Automatic Control, Vol. AC-28, March 1983.