DOI QR코드

DOI QR Code

A Study of the Characteristics of Heavy Rainfall in Seoul with the Classification of Atmospheric Vertical Structures

대기연직구조 분류에 따른 서울지역 강한 강수 특성 연구

  • Nam, Hyoung-Gu (High Impact Weather Research Center, Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Guo, Jianping (State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences) ;
  • Kim, Hyun-Uk (High Impact Weather Research Center, Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Jeong, Jonghyeok (High Impact Weather Research Center, Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Baek-Jo (High Impact Weather Research Center, Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Shim, Jae-Kwan (High Impact Weather Research Center, Observation and Forecast Research Division, National Institute of Meteorological Sciences) ;
  • Kim, Byung-Gon (Department of Atmospheric Environmental Sciences, Gangneung-Wonju National University)
  • 남형구 (국립기상과학원 관측예보연구과 재해기상연구센터) ;
  • ;
  • 김현욱 (국립기상과학원 관측예보연구과 재해기상연구센터) ;
  • 정종혁 (국립기상과학원 관측예보연구과 재해기상연구센터) ;
  • 김백조 (국립기상과학원 관측예보연구과 재해기상연구센터) ;
  • 심재관 (국립기상과학원 관측예보연구과 재해기상연구센터) ;
  • 김병곤 (강릉원주대학교 대기환경과학과)
  • Received : 2019.12.04
  • Accepted : 2019.12.30
  • Published : 2019.12.31

Abstract

In this study, the atmospheric vertical structure (AVS) associated with summertime (June, July, and August) heavy rainfall in Seoul was classified into three patterns (Loaded Gun: L, Inverted V: IV, and Thin Tube: TT) using rawinsonde soundings launched at Osan from 2009 to 2018. The characteristics of classified AVS and precipitation property were analyzed. Occurrence frequencies in each type were 34.7% (TT-type), 20.4% (IV-type), 20.4% (LG-type), and 24.5% (Other-type), respectively. The mean value of Convective Available Potential Energy (1131.1 J kg-1) for LG-types and Storm Relative Helicity (357.6 ㎡s-2) for TT-types was about 2 times higher than that of other types, which seems to be the difference in the mechanism of convection at the low level atmosphere. The composited synoptic fields in all cases showed a pattern that warm and humid southwesterly wind flows into the Korean Peninsula. In the cases of TT-type, the low pressure center (at 850 hPa) was followed by the trough in upper-level (at 500 hPa) as the typical pattern of a low pressure deepening. The TT-type was strongly influenced by the low level jet (at 850 hPa), showing a pattern of connecting the upper- and low-level jets. The result of analysis indicated that precipitation was intensified in the first half of all types. IV-type precipitation induced by thermal instability tended to last for a short term period with strong precipitation intensity, while TT-type by mechanical instability showed weak precipitation over a long term period.

본 연구는 서울에서 강한 강수와 관련된 대기연직구조를 객관적으로 분류하고 대표 종관장과 강수 특성을 제시하고자 하였다. 이를 위해 2009년부터 2018년까지 여름철 (6~8월) 서울에서 강한 강수(>15 mm hr-1) 시 오산에서 비양된 레윈존데 자료에 객관적 방법을 적용하여 대기연직구조를 분류하였다. 그 결과 대기 전체가 습윤한 형태인 Thin Tube (TT) 형이 34.7% (17회), 건조한 하층 위로 습윤한 층이 존재하는 Inverted V (IV) 형이 20.4% (10회), 습윤한 하층 위로 건조한 공기가 침투하는 Loaded Gun (LG)이 20.4% (10회)로 분석되었다. TT형의 경우 SRH 값이 357.6 J kg-1으로 역학적 불안정이 큰 반면, LG와 IV형의 경우 1000 hPa부터 600 hPa까지 열적 불안정이 큰 특징을 보였다. NCEP/FNL 자료를 사용한 합성장 분석에서 TT형의 경우 기압골 전면(500 hPa)인 서해상에 저기압이 위치하여(850 hPa) 저기압이 강화될 수 있는 종관 패턴이 형성되었다. IV와 LG형의 경우 북만주와 중국의 북동에 강한 저기압이 위치하는 종관 패턴을 보이며, 기압경도에 의한 남서기류의 유입이 상대적으로 약하였다. 강수 전반부에 강수가 집중되는 형태가 모든 유형에서 나타났으며, 특히 IV형의 경우 강수 전반 높은 강도로 강수가 집중되어 내린다. TT형의 경우 가장 많은 강수량(123.9 mm)을 보였지만 다른 유형과 비교하였을 때, 강수가 전·후반 고르게 오랜 시간 지속되는 특징을 보였다. 본 연구 결과는 서울에서 강수와 관련된 고층관측자료의 이해도를 높이는 동시에 강수 예보기술 발전에 기여할 수 있을 것이다.

Keywords

References

  1. Beebe, R. G., 1955, Types of airmasses in which tornados occur. Bulletin of the American meteorological society, 36, 349-350.
  2. Choi, G.-Y., 2016, Chang in mean and extreme events of changma-period precipitation since mid-Joseon dynasty in Seoul, Korea. Journal of the Korean Geographical Society, 52(1), 23-40.
  3. Choi, S.-B., and Lee, J.-G., 2016, A numerical study of a heavy rainfall event over Daegwallyeong on 31 July 2014. Atmosphere, 26(1), 159-183. https://doi.org/10.14191/Atmos.2016.26.1.159
  4. Eom, H.-S., and Suh, M.-S., 2010, Analysis of stability indexes for lightning by using upper air observation data over South Korea. Atmosphere, 20, 467-482.
  5. Jeong, G.-Y., and Ryu, C.-S., 2008, The synoptic characteristics of heavy rain in South Korea. Journal of the Chosun Natural Science, 1(2), 89-114
  6. Jo, Y.-J., Lee, H. C., Lim, B.-H., Kim, S.-B., 2019, Classification of weather patterns in the East Asia region using the K-mean clustering analysis. Atmosphere, 29(4), 451-461. https://doi.org/10.14191/Atmos.2019.29.4.451
  7. Jo, Y.-J., Lee H.-J., Chang L.-S., and Kim, C.-H., 2017, Sensitivity study of the initial meteorology fields on the PM10 concentration predictions using CMAQ modeling. Journal of Korean Society for Atmospheric Environment, 33(6), 554-569. https://doi.org/10.5572/KOSAE.2017.33.6.554
  8. Jung, S.-P., Kwon, T.-Y., and Han, S.-O., 2014, Thermodynamic Characteristics Associated with Localized Torrential Rainfall Events in the Middle West Region of Korean Peninsula. Atmosphere, 24(4), 457-470. https://doi.org/10.14191/Atmos.2014.24.4.457
  9. Jung, S. P., In, S.-R., Kim, H.-W., Sim, J.-K., Han, S.-O., and Choi, B.-C., 2015, Classification of atmospheric vertical environment associated with heavy rainfall using long-term radiosonde observational data, 1997-2013. Atmosphere, 25(4), 611-622. https://doi.org/10.14191/Atmos.2015.25.4.611
  10. Kim, D.-W., Kim, Y.-H., Kim, K.-H., Shin, S.-S., Kim, D.-K., Hwang, Y.-J., Park, J.-I. Choi, D.-Y., and Lee, Y.-H., 2012, Effect on urbanization on rainfall events during the 2010 Summer intensive observation period over Seoul metropolitan area. Atmosphere, 33(3), 219-232.
  11. Kim, J.-H. and Lee, T.-Y., 2012, Change of synoptic climatology associated with the variation of Summer rainfall amount over Korean peninsula around 1993/1994. Atmosphere, 22(4), 401-413. https://doi.org/10.14191/Atmos.2012.22.4.401
  12. Kim, K.-H., Kim, Y.-H., and Jang, D.-E., 2009a, The analysis of changma structure using radiosonde observational data from KEOP-2007: Part II. the dynamic and thermodynamic characteristics of Changma in 2007. Atmosphere, 19(4), 297-307.
  13. Kim, K.-H., Kim, Y.-H., and Lee, D.-G., 2009b, The analysis of changma structure using radiosonde observational data from KEOP-2007: Part I. the assessment of the radiosonde data. Atmosphere, 19(2), 213-226.
  14. Kim, M.-A., Heo, B.-H., Kim, K.-E., and Lee, D.-I., 2009, Analysis of kinematic characteristics of synoptic data for a heavy rain event (25 Jun 2006) occurred in changma front. Atmosphere, 19(1), 37-51.
  15. Korea Meteorological Administration (KMA), 2012, Learn from case of the last 20 years, top 10 heavy rainfall. 6-13 pp.
  16. Korea Meteorological Administration, 2009, Forecast Glossary. http://www.weather.go.kr/HELP/html/help_fct008.jsp (December 30th 2019)
  17. Kwon. T.-Y., Kim, J.-S., and Kim, B.-G., 2013, Comparison of the properties of Yeongdong and Yeongseo heavy rain. Atmosphere, 23(3), 245-264. https://doi.org/10.14191/Atmos.2013.23.3.245
  18. Miller R. C., 1972, Notes on analysis and severe storm forecasting procedures of the Air Force Global Weather Central Air Weather Service Technical report, 190-200 p.
  19. National Emergency Management Agency, 2014, Annual disaster report for 2013. 680 p.
  20. Schaefer, J. T., 1986, Severe thunderstorm forecasting: a historical perspective Weather and Forecasting, 1, 164-189. http://doi.org/10.1175/1520-0434(1986)001<0164:STFAHP.2.0.CO;2.
  21. Yan, Y., Y. Miao, J. Guo, S. Liu, H. Liu, M. Lou, L. Liu, D. Chen, W. Xue, and Zhai, P., 2018, Synoptic patterns and sounding-derived parameters associated with summertime heavy rainfall in Beijing. International Journal of Climatology, 2018;1-14. https://doi.org/10.1002/joc.5895.