• Title/Summary/Keyword: synoptic patterns

Search Result 78, Processing Time 0.024 seconds

Surface Synoptic Climatic Patterns for Heavy Snowfall Events in the Republic of Korea (우리나라 대설 시 지상 종관 기후 패턴)

  • Choi, Gwang-Yong;Kim, Jun-Su
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.3
    • /
    • pp.319-341
    • /
    • 2010
  • The purposes of this study are to classify heavy snowfall types in the Republic of Korea based on fresh snowfall data and atmospheric circulation data during the last 36(1973/74-2008/09) snow seasons and to identify typical surface synoptic climate patterns that characterize each heavy snowfall type. Four synoptic climate categories and seventeen regional heavy snowfall types are classified based on sea level pressure/surface wind vector patterns in East Asia and frequent spatial clustering patterns of heavy snowfall in the Republic of Korea, respectively. Composite analyses of multiple surface synoptic weather charts demonstrate that the locations and intensity of pressure/wind vector mean and anomaly cores in East Asia differentiate each regional heavy snowfall type in Korea. These differences in synoptic climatic fields are primarily associated with the surge of the Siberian high pressure system and the appearance of low pressure systems over the Korean Peninsula. In terms of hemispheric atmospheric circulation, synoptic climatic patterns in the negative mode of winter Arctic Oscillation (AO) are also associated with frequent heavy snowfall in the Republic of Korea at seasonal scales. These results from long-term synoptic climatic data could contribute to improvement of short-range or seasonal prediction of regional heavy snowfall.

Synoptic Weather Patterns and Variation of Ozone Concentrations Association with High Ozone Days at Five Major Cities in Korea (고농도 오존이 발생하는 날의 종관 기상 패턴과 주요 5대 도시별 오존 농도 변화)

  • 김유라;윤일희;김희종
    • Journal of Environmental Science International
    • /
    • v.10 no.6
    • /
    • pp.437-444
    • /
    • 2001
  • The characteristic features of surface ozone concentration and the forecasting procedure of high ozone days have been studied. The ozone concentration was continuously measured during 3 years (1997~1999) at air quality monitoring stations in five major cities in Korea. The diurnal variation of surface ozone concentration on high ozone days is characterized by low ozone concentration at night. The ozone concentration Increases continuously after sunrise, In reach a peak at 1500~1600 LST. Thereafter it decreases steadily to a low concentration at sunset. The diurnal and annual maximum of the surface ozone concentration at Seoul were observed in May and June, respectively. The favorable synoptic condition for the high ozone day is divided into 4 different synoptic weather patterns: a high-pressure system from the Sea of Okhotsk, the Pacific subtropical high extending westward, a moving high-pressure system covering the Korean peninsula. and a synoptic system In front of a typhoon. Most of high ozone days occur under the high pressure system in Korea.

  • PDF

A Study on Spatial Differences in PM2.5 Concentrations According to Synoptic Meteorological Distribution (종관 기상 분포에 따른 PM2.5 농도의 공간적 차이에 관한 연구)

  • Da Eun Chae;Soon-Hwan Lee
    • Journal of Environmental Science International
    • /
    • v.31 no.12
    • /
    • pp.999-1012
    • /
    • 2022
  • To investigate the reason for the spatial difference in PM2.5 (Particulate Matter, < 2.5 ㎛) concentration despite a similar synoptic pattern, a synoptic analysis was performed. The data used for this study were the daily average PM2.5 concentration and meteorological data observed from 2016 to 2020 in Busan and Seoul metropolitan areas. Synoptic pressure patterns associated with high PM2.5 concentration episodes (greater than 35 ㎍/m3) were analyzed using K-means cluster analysis, based on the 900 hPa geopotential height of NCEP (National Centers for Environmental Prediction) FNL (Final analysis) data. The analysis identified three sub-groups related to high concentrations occurring only in Busan and Seoul metropolitan areas. Although the synoptic patterns of high PM2.5 concentration episodes that occur independently in Busan and Seoul metropolitan areas were similar, there was a difference in the intensity of pressure gradient and its direction, which tends to be an important factor determining the movement time of pollutants. The spatial difference in PM2.5 concentration in the Korean Peninsula is due to the difference and direction of the atmospheric pressure gradient that develops from southwest to northeast direction.

Assessment of Precipitation Characteristics and Synoptic Pattern Associated with Typhoon Affecting the South Korea (우리나라 내습태풍 유형에 따른 강우특성 및 종관기후학적 분석)

  • Kim, Tae-Jeong;Park, Kun-Chul;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.6
    • /
    • pp.463-477
    • /
    • 2015
  • The recent unusual climate and extreme weather events have frequently given unexpected disaster and damages, facing difficulties in the management of water resources. In particular, climate change could result in intensified typhoons, and this would be the worst case scenario that can happen. The primary objective of this study is to identify the patterns of typhoon-induced precipitation and the associated synoptic pattern. This study focused on analyzing precipitation patterns over the South Korea using historic records as opposed to a specified season or duration, and further investigates the potential connection with heavy rainfall to synoptic patterns. In this study, we used the best track data provided by the Regional Specialized Meteorological Center of Japan for 40 years from 1973 to 2012. The patterns of the typhoon-induced precipitation were categorized into four groups according to a given typhoon track information, and then the associated synoptic climatology patterns were further investigated. The results demonstrate that the typhoon-induced precipitation patterns could be grouped and potentially simulated according to the identified synoptic patterns. Our future work will focus on developing a short-term forecasting model of typhoon-induced precipitation considering the identified climate patterns as inputs.

Dominant Synoptic Patterns Controlling PM10 Spatial Variabilities over the Korean Peninsula

  • Park, Hyo-Jin;Wie, Jieun;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.40 no.5
    • /
    • pp.476-486
    • /
    • 2019
  • This study examines the controlling role of synoptic disturbances on $PM_{10}$ spring variability in the Korean Peninsula by using empirical orthogonal function (EOF) and back trajectory analyses. Three leading EOF modes are identified, and a lead-lag analysis suggests that $PM_{10}$ variabilities be closely related to the synoptic weather systems. The first EOF shows the spatially homogeneous distribution of $PM_{10}$, which is influenced by travelling anticyclonic disturbance with negative precipitation and descending motion. The second and third modes exhibit the dipole structures of $PM_{10}$, being associated with propagating cyclones. Furthermore, the back-trajectory analysis suggests that the transport of pollutants by anomalous winds associated with synoptic disturbances also contribute to the altered $PM_{10}$ concentration. Hence, a substantial synoptic control should be considered in order to fully understand the $PM_{10}$ spatiotemporal variability.

Pattern Recognition of Meteorological fields Using Self-Organizing Map (SOM)

  • Nishiyama Koji;Endo Shinichi;Jinno Kenji
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.9-18
    • /
    • 2005
  • In order to systematically and visually understand well-known but qualitative and rotatively complicated relationships between synoptic fields in the BAIU season and heavy rainfall events in Japan, these synoptic fields were classified using the Self-Organizing Map (SOM) algorithm. This algorithm can convert complex nonlinear features into simple two-dimensional relationships, and was followed by the application of the clustering techniques of the U-matrix and the K-means. It was assumed that the meteorological field patterns be simply expressed by the spatial distribution of wind components at the 850 hPa level and Precipitable Water (PW) in the southwestern area including Kyushu in Japan. Consequently, the synoptic fields could be divided into eight kinds of patterns (clusters). One of the clusters has the notable spatial feature represented by high PW accompanied by strong wind components known as Low-Level Jet (LLJ). The features of this cluster indicate a typical meteorological field pattern that frequently causes disastrous heavy rainfall in Kyushu in the rainy season. From these results, the SOM technique may be an effective tool for the classification of complicated non-linear synoptic fields.

  • PDF

Classification of Synoptic Meteorological Patterns for the Environmental Assessment of Regional-scale Long Range Transboundary Air Pollutants (지역규모 장거리 대기오염 이동물질의 환경영향평가를 위한 종관기상 조건의 분류)

  • Kim, Cheol-Hee;Son, Hye-Young;Kim, Ji-A;Ahn, Tae-Keun
    • Journal of Environmental Impact Assessment
    • /
    • v.16 no.1
    • /
    • pp.89-98
    • /
    • 2007
  • In order to conduct the environmental assessment of long range transboundary air pollutants over East Asia, the moving pathways of air pollutants are of great importance, which are depending upon the meteorological weather patterns. Therefore regional scale modeling study requires the identified geopotential height distribution patterns to deal with behaviors of long range transport air pollutants for the effective long term atmospheric environmental assessment. In this study the synoptic meteorological classification using cluster analysis technique over Northeast Asia, and its previous applications of the regional scale air pollutant modeling studies were reviewed and summarized in detail. Other synoptic meteorological characteristics over Korean peninsula are also discussed.

Synoptic Climatic Patterns for Winter Extreme Low Temperature Events in the Republic of Korea (우리나라 겨울철 극한저온현상 발생 시 종관 기후 패턴)

  • Choi, Gwangyong;Kim, Junsu
    • Journal of the Korean Geographical Society
    • /
    • v.50 no.1
    • /
    • pp.1-21
    • /
    • 2015
  • The present study aims to characterize the synoptic climatic patterns of winter extreme low temperature events occurred in different regions of Korea based on daily temperature data observed at 61 weather stations under the supervision of the Korea Meteorological Administation and NCEP/NCAR reanalysis I data for the recent 40 years (1973~2012) period. Analyses of daily maximum and minimum temperatures below 10th percentile thresholds show that high frequencies of winter extreme low temperature events appear across the entire regions of Korea or in either the western or eastern half region divided by major mountain ridges at the 2~7 dayintervals particularly in the first half of the winter period (before mid-January). Composite analyses of surface synoptic climatic data including sea level pressure and wind vector reveal that 13 regional types of winter extreme low temperature events in Korea are closely associated with the relative location and intensity of both the Siberian high pressure and the Aleutian low pressure systems as well as major mountain ridges. Investigations of mid-troposphere (500 hPa) synoptic climatic charts demonstrate that the blocking-like upper troposphere low pressure system advecting the cold air from the Arctic toward the Korean Peninsula may provide favorable synoptic conditions for the outbreaks of winter extreme low temperature events in Korea. These results indicate that the monitoring of synoptic scale climatic systems in East Asia including the Siberian high pressure system, the Aleutian low pressure system and upper level blocking system is critical to the improvement of the predictability of winter extreme low temperature events in Korea.

  • PDF

Design and Assessment of an Ozone Potential Forecasting Model using Multi-regression Equations in Ulsan Metropolitan Area (중회귀 모형을 이용한 울산지역 오존 포텐셜 모형의 설계 및 평가)

  • Kim, Yoo-Keun;Lee, So-Young;Lim, Yun-Kyu;Song, Sang-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.14-28
    • /
    • 2007
  • This study presented the selection of ozone ($O_3$) potential factors and designed and assessed its potential prediction model using multiple-linear regression equations in Ulsan area during the springtime from April to June, $2000{\sim}2004$. $O_3$ potential factors were selected by analyzing the relationship between meterological parameters and surface $O_3$ concentrations. In addition, cluster analysis (e.g., average linkage and K-means clustering techniques) was performed to identify three major synoptic patterns (e.g., $P1{\sim}P3$) for an $O_3$ potential prediction model. P1 is characterized by a presence of a low-pressure system over northeastern Korea, the Ulsan was influenced by the northwesterly synoptic flow leading to a retarded sea breeze development. P2 is characterized by a weakening high-pressure system over Korea, and P3 is clearly associated with a migratory anticyclone. The stepwise linear regression was performed to develop models for prediction of the highest 1-h $O_3$ occurring in the Ulsan. The results of the models were rather satisfactory, and the high $O_3$ simulation accuracy for $P1{\sim}P3$ synoptic patterns was found to be 79, 85, and 95%, respectively ($2000{\sim}2004$). The $O_3$ potential prediction model for $P1{\sim}P3$ using the predicted meteorological data in 2005 showed good high $O_3$ prediction performance with 78, 75, and 70%, respectively. Therefore the regression models can be a useful tool for forecasting of local $O_3$ concentration.