참고문헌
- G. F. Carrier, On the nonlinear vibration problem of the elastic string, Quart. Appl. Math., 3(1945), 157-165. https://doi.org/10.1090/qam/12351
- M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and uniform decay rates for the Kirchhoff-Carrier equation with nonlinear dissipation, Adv. Differential Equations, 6(6)(2001), 701-730.
- M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Exponential decay for the solution of semilinear viscoelastic wave equations with localized damping, Electron. J. Differential Equations, (2002), No. 44, 1-14.
- M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Commun. Contemp. Math., 6(5)(2004), 705-731. https://doi.org/10.1142/S0219199704001483
- E. A. Coddington and N. Levinson, Theory of ordinary differential equations, McGraw-Hill, 1955.
- Y. Ebihara, L. A. Medeiros and M. M. Miranda, Local solutions for a nonlinear degenerate hyperbolic equation, Nonlinear Anal., 10(1986), 27-40. https://doi.org/10.1016/0362-546X(86)90009-X
- M. Hosoya and Y. Yamada, On some nonlinear wave equations I : Local existence and regularity of solutions, J. Fac. Sci. Univ. Tokyo. Sect. IA Math., 38(1991), 225-238.
- L. Jie and L. Fei, Blow-up of solution for an integrodifferential equation with arbitrary positive initial energy, Bound. Value Probl., (2015), 2015:96, 10 pp.
- G. R. Kirchhoff, Vorlesungen uber mathematische physik: Mechanik, Teuber, Leipzig, 1876.
- N. A. Larkin, Global regular solutions for the nonhomogeneous Carrier equation, Math. Probl. Eng., 8(2002), 15-31. https://doi.org/10.1080/10241230211382
- I. LasieckaI and J, Ong, Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation, Comm. Partial Differential Equations, 24(11-12)(1999), 2069-2107. https://doi.org/10.1080/03605309908821495
- J. L. Lions, Quelques methodes de resolution des problems aux limites non-lineares, Dunod; Gauthier-Villars, Paris, 1969.
- J. L. Lions, On some questions in boundary value problems of mathematical physics, Contemporary developments in continuum mechanics and partialdifferential equations, 284-346, North-Holland Math. Stud. 30, North-Holland, Amsterdam-New York, 1978.
- N. T. Long, Asymptotic expansion of the solution for nonlinear wave equation with the mixed homogeneous conditions, Nonlinear Anal., 45(2001), 261-272. https://doi.org/10.1016/S0362-546X(99)00332-6
-
N. T. Long, On the nonlinear wave equation
$u_{tt}$ -$B(t,\;{\paralle}u{\paralle}^2\;,\;{\paralle}u_x{\paralle}^2)u_{xx}$ =$f(x,\;t,\;u,\;u_x,\;u_t,\;{\paralle}u{\paralle}^2\;,\;{\paralle}u_x{\paralle}^2)$ associated with the mixed homogeneous conditions, J. Math. Anal. Appl., 306(1)(2005), 243-268. https://doi.org/10.1016/j.jmaa.2004.12.053 - N. T. Long, A. P. N. Ding and T. N. Diem, Linear recursive schemes and asymptotic expansion associated with the Kirchhoff-Carrier operator, J. Math. Anal. Appl., 267(1)(2002), 116-134. https://doi.org/10.1006/jmaa.2001.7755
- N. T. Long and L. X. Truong, Existence and asymptotic expansion for a viscoelastic problem with a mixed nonhomogeneous condition, Nonlinear Anal., 67(3)(2007), 842-864. https://doi.org/10.1016/j.na.2006.06.044
- L. A. Medeiros, On some nonlinear perturbation of Kirchhoff-Carrier operator, Mat. Apl. Comput., 13(1994), 225-233.
- L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part one, J. Comput. Anal. Appl., 4(2)(2002), 91-127. https://doi.org/10.1023/A:1012934900316
- L. A. Medeiros, J. Limaco and S. B. Menezes, Vibrations of elastic strings: Mathematical aspects, Part two, J. Comput. Anal. Appl., 4(3)(2002), 211-263. https://doi.org/10.1023/A:1013151525487
- G. P. Menzala, On global classical solutions of a nonlinear wave equation, Applicable Anal., 10(1980), 179-195. https://doi.org/10.1080/00036818008839300
- S. A. Messaoudi, Blow up and global existence in a nonlinear viscoelsatic wave equation, Math. Nachr., 260(2003), 58-66. https://doi.org/10.1002/mana.200310104
- M. Milla Miranda and L. P. San Gil Jutuca, Existence and boundary stabilization of solutions for the Kirchhoff equation, Comm. Partial Differential Equations, 24(9-10)(1999), 1759-1800. https://doi.org/10.1080/03605309908821482
- L. T. P. Ngoc, L. N. K. Hang and N. T. Long, On a nonlinear wave equation associated with the boundary conditions involving convolution, Nonlinear Anal., 70(11)(2009), 3943-3965. https://doi.org/10.1016/j.na.2008.08.004
-
L. T. P. Ngoc, N. A. Triet and N. T. Long, On a nonlinear wave equation involving the
$-{\frac{\partial}{{\partial}x}}({\mu}(x,\;t,\;u,\;{\paralle}u_x{\paralle}^2)u_x)$ : Linear approximation and asymptotic expansion of solution in many small parameters, Nonlinear Anal. Real World Appl., 11(4)(2010), 2479-2501. https://doi.org/10.1016/j.nonrwa.2009.08.005 - S. H. Park, Stability for a viscoelastic plate equation with p-Laplacian, Bull. Korean Math. Soc. 52(3)(2015), 907-914. https://doi.org/10.4134/BKMS.2015.52.3.907
- J. Y. Park and J. J. Bae, On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term, Appl. Math. Comput., 129(2002), 87-105. https://doi.org/10.1016/S0096-3003(01)00031-5
- J. Y. Park, J. J. Bae and I. H. Jung, Uniform decay of solution for wave equation of Kirchhoff type with nonlinear boundary damping and memory term, Nonlinear Anal., 50(2002), 871-884. https://doi.org/10.1016/S0362-546X(01)00781-7
- S. I. Pohozaev, On a class of quasilinear hyperbolic equation, Math. USSR. Sb., 25(1975), 145-158. https://doi.org/10.1070/SM1975v025n01ABEH002203
- T. N. Rabello, M. C. C. Vieira, C. L. Frota and L. A. Medeiros, Small vertical vibrations of strings with moving ends, Rev. Mat. Complut., 16(2003), 179-206.
- M. L. Santos, J. Ferreira, D. C. Pereira and C. A. Raposo, Global existence and stability for wave equation of Kirchhoff type with memory condition at the boundary, Nonlinear Anal., 54(2003), 959-976. https://doi.org/10.1016/S0362-546X(03)00121-4
- R. E. Showater, Hilbert space methods for partial differential equations, Electronic Monographs J. Differential Equations, San Marcos, TX, 1994.