DOI QR코드

DOI QR Code

Capacity Analysis of Civil Defense Shelter and Optimal Positioning Using Spatial-Database and Genetic Algorithm

공간데이터베이스와 유전자 알고리즘을 활용한 민방위대피소 수용 능력 분석 및 최적 위치 선정

  • 유수홍 (연세대학교 대학원 건설환경공학과) ;
  • 배준수 (연세대학교 대학원 건설환경공학과) ;
  • 이지상 (연세대학교 대학원 건설환경공학과) ;
  • 손홍규 (연세대학교 대학원 건설환경공학과)
  • Received : 2019.11.06
  • Accepted : 2019.11.14
  • Published : 2019.12.01

Abstract

Currently, the establishment and management of civil defense shelters are under the initiative of the government and local governments to protect the lives of citizens. In the future, there is a need for efficient civil defense shelters operation through the expansion of general shelters, including designated dedicated shelters. Therefore, it is more efficient to consider the distribution of residents and the location of access to shelters, not the quantitative operation considering only the number of residents. This study uses genetic algorithms and Huff gravity model based on census output data, building data, and road network information to understand the distribution of inhabitants more precisely than existing administrative district data. In addition, the spatial- database was used for efficient data management and fast processing, and if this study is improved, it can be used as a basis for the selection and improvement of general shelters positioning for a wider area.

현재 시민의 생명을 보호하기 위한 목적으로 민방위대피소의 설치와 관리가 정부 및 지자체 주도하에 이뤄지고 있다. 향후에는 지정된 전용 대피소를 포함하여 일반 대피시설의 확장을 통한 효율적인 민방위 대피소 운영의 필요성이 제기되고 있다. 따라서, 대피소의 선정 시 수용인원만을 고려한 양적인 운영이 아닌 거주민의 분포 및 대피소의 접근 위치를 고려하는 것이 효율적이라고 할 수 있다. 본 연구에서는 기존의 행정구역 데이터에 비해 세밀하게 거주민 분포를 파악할 수 있는 전수 집계구 데이터와 건물 데이터, 도로망 정보를 기반으로 유전자 알고리즘과 Huff 중력 모델을 활용하여 모든 거주민을 실질적으로 수용할 수 있는 민방위대피소를 선정하였다. 또한, 효율적인 데이터 관리와 빠른 처리를 위해 공간 데이터베이스를 활용하였으며, 본 연구 성과를 개량하면 시 단위의 광범위한 지역에 대해서도 일반 대피시설의 선정 및 개선 연구의 기반 자료로 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Bae, J. S., Kim, M. K., Yoo, S. H., Heo, J. and Sohn, H. G. (2019). "Shelter location-allocation for tsunami using floating population and genetic algorithm." Journal of the Korean Society of Surveying, Vol. 37, No. 3, pp. 157-165 (in Korean).
  2. Choi, J. H. and Joo, S. M. (2014). "GIS spatial analysis base on the distribution characteristics and location suitability of emergency evacuation in Cheongju." Regional Policy Research, Vol. 25, No. 1, pp. 109-120 (in Korean).
  3. Cormen, T. H., Leiserson, C. E., Rivest, R. L. and Stein, C. (2001). Introduction to algorithms (Second ed.), MIT Press and McGraw-Hill, New York, pp. 595-601.
  4. DB-Engines (2019). Db-engines ranking, Available at: https://db-engines.com/en/ranking (Accessed: September 20, 2019).
  5. Hu, F., Yang, S. and Xu, W. (2014). "A non-dominated sorting genetic algorithm for the location and districting planning of earthquake shelters." International Journal of Geographical Information Science, Vol. 28, No. 7, pp. 1482-1501. https://doi.org/10.1080/13658816.2014.894638
  6. Huff, D. L. (1966). "A programmed solution for approximating an optimum retail location." Land Economics, Vol. 42, No. 3, pp. 293-303. https://doi.org/10.2307/3145346
  7. Kim, M. K., Kang, S. H., Kim, S. P. and Sohn, H. G. (2016). "A Spatial analysis of shelter capacity using floating population." Journal of the Korean Society of Surveying, Vol. 34, No. 1, pp. 1-10 (in Korean).
  8. Kongsomsaksakul, S., Yang, C. and Chen, A. (2005). "Shelter location-allocation model for flood evacuation planning." Journal of the Eastern Asia Society for Transportation Studies, Vol. 6, pp. 4237-4252.
  9. Korea Research Institute for National Strategy (2016). Civil defense resident evacuation standards study on improvement, Ministry of Public Safety and Security (in Korean).
  10. Korea Transport Database (2016). Traffic network GIS DB, Available at: https://www.ktdb.go.kr/www/index.do (Accessed: September 20, 2019) (in Korean).
  11. Kurowska, K., Kryszk, H. and Kietlinska, E. (2017). "The use of gravity model in spatial planning." Environmental Engineering 10th International Conference, Vilnius Gediminas Technical University, 27-28 April 2017, Vol. 10, pp. 1-9.
  12. Mayo, E. J., Jarvis, L. P. and Xander, J. A. (1988). "Beyond the gravity model." Academy of Marketing Science, Vol. 16, No. 3-4, pp. 23-29. https://doi.org/10.1007/BF02723355
  13. National Spatial Data Infrastructure Portal (2019). Census boundary data and digital map, Available at: http://www.nsdi.go.kr/ (Accessed: September 20, 2019) (in Korean).
  14. The Korea Transport Institute (2019). GIS DB Explanation documents as of 2017, Korea Transport DataBase Center (in Korean).
  15. Tong, D., Murray, A. and Xiao, N. (2009). "Heuristics in spatial analysis: a genetic algorithm for coverage maximization." Annals of the Association of American Geographers, Vol. 99, No. 4, pp. 698-711. https://doi.org/10.1080/00045600903120594
  16. Yoo, S. H., Kim, M. K., Bae, J. S. and Sohn, H. G. (2018). "Selection of appropriate location for civil defense shelters using genetic algorithm and network analysis." Journal of the Korean Society of Surveying, Vol. 36, No. 6, pp. 573-580 (in Korean).