DOI QR코드

DOI QR Code

한반도 과거 지진기록에 대한 응답이력 데이터베이스 구축 기초 연구

A Fundamental Study on the Database of Response History for Historical Earthquake Records on the Korean Peninsula

  • 최인혁 (한양대학교 ERICA 건설환경시스템공학과) ;
  • 안재광 (기상청 지진화산연구과) ;
  • 곽동엽 (한양대학교 ERICA 건설환경공학과)
  • 투고 : 2019.11.04
  • 심사 : 2019.11.14
  • 발행 : 2019.12.01

초록

9.12지진(2016.9.12., ML=5.8)과 포항지진(2017.11.15., ML=5.4)은 사회·경제적 피해를 야기시켰고, 이로 인해 지진에 대한 국민의 관심이 과거보다 크게 높아졌다. 지진 빈도가 높은 미국, 일본, 칠레 등 불의 고리 인근의 국가에서는 이미 지진재난에 대비·대응을 위하여 지진재해도(PSHA), 지반운동예측모델(GMPE) 등을 기반으로 인프라 시설을 관리하고 있다. 국내도 앞서 설명된 PSHA, GMPE가 개별 연구자들을 통해 독자적으로 개발되고 있지만, 모델 개발시 생성한 기초 데이터 산출 방법, 최종 결과물의 주요 요소 등이 제한적으로 공개되었다. 이는 해마다 발생하는 지진의 추가를 통한 모델 개선이 아닌 과거 지진에 대해 매번 새롭게 자료 구축을 해야 한다는 문제점을 내포하고 있다. 따라서, 본 연구에서는 GMPE 개발의 기초자료인 플랫파일 생성 방법과 지진 관측자료의 지진파형의 계기보정 방법, 계기진도 생성 방법 등을 기술하였다.

The 9.12 earthquake (2016.9.12., ML=5.8) and Pohang (2017.11.15., ML=5.4) caused social and economic damage, resulting in a greater public interest in earthquakes than in the past. In the U.S., Japan and Chile, which have high frequency of earthquakes, infrastructure facilities are already managed based on probabilistic seismic hazard analysis (PSHA) and ground motion prediction equation (GMPE) to prepare for and respond to seismic disasters. In South Korea, the aforementioned PSHA and GMPE models have been developed independently through individual researchers. However, the limited disclosure of basic data, calculation methods, and final results created during the model development poses a problem of deploying new data without updating the earthquake that occurs every year. Therefore, this paper describes how to create flatfile, which is the basic data of GMPE, and how to process for seismic waves, and how to create intensity measures.

키워드

참고문헌

  1. Ancheta, T. D., Darragh, R. B., Stewart, J. P., Seyhan, E., Silva, W. J., Chiou, B. S. J., Wooddell, K. E., Graves, R. W., Kottke, A. R., Boore, D. M. and Kishida, T. (2014). "NGA-West2 database." Earthq. Spectra, Vol. 30, No. 3, pp. 989-1005. https://doi.org/10.1193/070913EQS197M
  2. Arias, A. (1970). A measure of earthquake intensity, seismic design for nuclear power plants, Hansen, R. J., MIT Press, Cambridgo, Massachusetts, pp. 438-483.
  3. Bastias, N. and Montalva, G. A. (2016). "Chile strong ground motion flatfile." Earthq. Spectra, Vol. 32, No. 4, pp. 2549-2566. https://doi.org/10.1193/102715EQS158DP
  4. Boore, D. M. (2010). "Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion." Bull. Seism. Soc. Am, Vol. 100, No. 4, pp. 1830-1835. https://doi.org/10.1785/0120090400
  5. Dawood, H. M., Rodriguez-Marek, A., Bayless, J., Goulet, C. and Thompson, E. (2016). "A flatfile for the KiK-net database processed using an automated protocol." Earthq. Spectra, Vol. 32, No. 2, pp. 1281-1302. https://doi.org/10.1193/071214eqs106
  6. Emolo, A., Sharma, N., Festa, G., Zollo, A., Convertito, V., Park, J. H., Chi, H. C. and Lim, I. S. (2015). "Ground-motion prediction equations for South Korea Peninsula." Bull. Seism. Soc. Am., Vol. 105, No. 5, pp. 2625-2640. https://doi.org/10.1785/0120140296
  7. Goulet, C. A., Kishida, T., Ancheta, T. D., Cramer, C. H., Darragh, R. B., Silva, W. J., Hashash, Y. M. A., Harmon, J., Stewart, J. P., Wooddell, K. E. and Youngs, R. R. (2014). PEER NGA-East database, Pacific Earthquake Engineering Research Center (PEER), California.
  8. Jeong, K. H. and Lee, H. S. (2018). "Ground-motion prediction equation for South Korea based on recent earthquake records." Earthquake and Structures, Vol. 15, No. 1, pp. 29-44. https://doi.org/10.12989/EAS.2018.15.1.029
  9. Jo, N. D. and Baag, C. E. (2003). "Estimation of spectrum decay parameter and stochastic prediction of strong ground motions in southeastern Korea." EESK J. Earthq. Eng., Vol. 7, No. 6, pp. 59-70.
  10. Kishida, T., Contreras, V., Bozorgnia, Y., Abrahamson, N. A., Ahdi, S. K., Ancheta, T. D., Boore, D. M., Campbell, K. W., Chiou, B. S. J., Darragh, R. B. and Gregor, N. (2018). "NGA-Sub ground motion database." 11NCEE (11 National Conference on Earthquake Engineering Integrating Science, Engineering & Policy), June 25-29, 2018, Los Angeles, CA.
  11. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2019a). Multiplatform GEOscience information system, Korea Institute of Geoscience and Mineral Resources (KIGAM), Available at: https://mgeo.kigam.re.kr/ (Accessed: October 10, 2019) (in Korean).
  12. Korea Institute of Geoscience and Mineral Resources (KIGAM) (2019b). Earthquake and observation net, Korea Institute of Geoscience and Mineral Resources (KIGAM), Available at: https://quake.kigam.re.kr/ (Accessed: October 10, 2019) (in Korean).
  13. Korea Meteorological Administration (KMA) (2017). 2016 yearbook of earthquakes, Korea meteorological administration (KMA) (in Korean).
  14. Korea Meteorological Administration (KMA) (2019). Information of earthquake staton, Korea Meteorological Administration (KMA), Available at: http://necis.kma.go.kr/ (Accessed: Jun 10, 2019) (in Korean).
  15. Kotha, S. R., Cotton, F. and Bindi, D. (2018). "A new approach to site classification: Mixed-effects ground motion prediction equation with spectral clustering of site amplification functions." Soil Dynamics and Earthquake Engineering, Vol. 110, pp. 318-329. https://doi.org/10.1016/j.soildyn.2018.01.051
  16. Kramer, S. L. and Mitchell, R. A. (2006). "Ground motion intensity measures for liquefaction hazard evaluation." Earthquake Spectra, Vol. 22, No. 2, pp. 413-438. https://doi.org/10.1193/1.2194970
  17. Lanzano, G., Sgobba, S., Luzi, L., Puglia, R., Pacor, F., Felicetta, C., D'Amico, M., Cotton, F. and Bindi, D. (2019). "The pan-European engineering strong motion (ESM) flatfile: compilation criteria and data statistics." Bull. Earthq. Eng., Vol. 17, No. 2, pp. 561-582. https://doi.org/10.1007/s10518-018-0480-z
  18. Nation Global Information Infra (NGII) (2019). National territory information platform - DEM90, Nation Global Information Infra (NGII), Available at: http://map.ngii.go.kr/ (Accessed: September 10, 2019) (in Korean).
  19. Noh, M. H. and Lee, K. H. (1995). "Estimation of peak ground motions in the southeastern part of the Korean peninsula (II): Development of predictive equations." J. Geological society of Korea, Vol. 31, No. 3, pp. 175-187 (in Korean).
  20. Pagani, M., Monelli, D., Weatherill, G., Danciu, L., Crowley, H., Silva, V., Henshaw P., Butler, L., Nastasi, M., Panzeri, L., Simionato, M. and Vigano, D. (2014). "OpenQuake engine: An open hazard (and risk) software for the global earthquake model." Seism. Research Letters, Vol. 85 No. 3, pp. 692-702. https://doi.org/10.1785/0220130087
  21. Petersen, M. D., Moschetti, M. P., Powers, P. M., Mueller, C. S., Haller, K. M., Frankel., Zeng, Y., Rezaeian, S., Harmsen, S. C., Boyd, O. S. and Field, N. (2015). "The 2014 United States national seismic hazard model." Earthq. Spectra, Vol. 31, No. S1, pp. S1-S30. https://doi.org/10.1193/120814EQS210M
  22. R Core Team (2019). R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. Available at: URL https://www.R-project.org/ (Accessed: September 10, 2019).
  23. Rhie et al. (2015). A basic study on building ShakeMap database of scenario earthquakes in the Korean Peninsula, Report (in Korean).
  24. Robinson, N., Regetz, J. and Guralnick, R. P. (2014). EarthEnv-DEM90 digital elevation model, EarthEnv, Available at: https://www.earthenv.org/DEM (Accessed: September 10, 2019).
  25. Sheen, D. H. (2011). A study on the analysis of observations capacity by seismic observation level, Report: study on development and application of earthquake monitoring techniques, National Institute of Meteorological Research (KMA) (in Korean).
  26. Silva, V. and Horspool, N. (2019). "Combining USGS Shake maps and the open quake-engine for damage and loss assessment." Earthquake Engineering & Structural Dynamics, Vol. 48, No. 6, pp. 634-652. https://doi.org/10.1002/eqe.3154
  27. Stafford, P. J., Rodriguez-Marek, A., Edwards, B., Kruiver, P. P. and Bommer, J. J. (2017). "Scenario dependence of linear site-effect factors for short-period response spectral ordinates scenario dependence of linear site-effect factors for short-period response spectral ordinates." Bull. Seism. Soc. Am., Vol. 107, No. 6, pp, 2859-2872. https://doi.org/10.1785/0120170084
  28. United States Geological Survey (USGS) (2019). Digital elevation - shuttle radar topography mission (SRTM) 1 Arc-second global, United States Geological Survey (USGS), Virginia, Available at: https://earthexplorer.usgs.gov/ (Accessed: September 10, 2019).
  29. Yun, K. H., Park, D. H., Chang, C. J. and Sim, T. M. (2008). "Estimation of aleatory uncertainty of the Ground-Motion attenuation relation based on the observed data." Proc. of EESK Conference 2008, Earthquake Engineering Society of Korea, EESK, pp. 116-123 (in Korean).