DOI QR코드

DOI QR Code

베이지안 기법을 이용한 제주지역 극치풍속의 비정상성 빈도해석

A Nonstationary Frequency Analysis of Extreme Wind Speed in Jeju using Bayesian Approach

  • 투고 : 2019.05.09
  • 심사 : 2019.10.10
  • 발행 : 2019.12.01

초록

지구 온난화로 인해 기후변화가 가속화되고 이에 따라 강풍에 대한 재해가 늘어날 것으로 판단된다. 이에 본 연구에서는 시간에 따른 선형 경향성을 고려한 비정상성 빈도해석 모형을 구축하기 위한 방법으로 Bayesian 기법을 적용하였다. 그리고 제주공항 지점의 연 최대풍속자료를 이용하여 극치분포 매개변수들의 사후분포를 추정하고 비정상성 빈도해석을 수행하였다. 재현기간 100년 빈도의 풍속을 추정한 결과를 보면, 경향성이 통계적으로 유의하며 이로 인해 비정상성 빈도해석에 의한 기본풍속이 정상성 빈도해석의 기본풍속보다 크게 추정되고 있다. 이처럼 기상자료의 정상성을 가정한 현재의 빈도해석 절차는 경향성이 존재하는 지역의 경우에 미래의 기본풍속을 과소 추정할 가능성이 크다고 판단된다.

Global warming may accelerate climate change and may increase disaster caused by strong winds. This research studied a method for a nonstationary frequency analysis considering the linear trend over time. The Bayesian method was used to estimate the posterior distribution of the parameters for the extreme value distribution of the annual maximum wind speed at Jeju Airport. The nonstationary frequency analysis was performed based on the Monte Carlo Markov Chain simulation and the Gibbs sampling. The estimated wind speeds by nonstationary frequency analysis was larger than those by stationary analysis. The conventional frequency analysis procedure assuming stationarity is likely to underestimate the future design wind speed in the region where statistically significant trend exists.

키워드

참고문헌

  1. Architectural Institute of Korea (2016). Korea building code-structural (in Korean).
  2. Choi, E. S. and Moon, I. J. (2008). "The variation of extreme values in the precipititation and wind speed during 56 years in Korea." Journal of the Korean Meteorological Society, Vol. 18, No. 4, pp. 397-416 (in Korean).
  3. Choi, K. S. and Kim, B. J. (2007). "Climatological characteristics of tropical cyclones making landfall over the Korean Peninsula." Journal of the Korean Meteorological Society, Vol. 43, No. 2, pp. 97-109.
  4. Cook, N. J. (1982). "Towards better estimation of wind speeds." Journal of Wind Engineering and Industrial Aerodynamics, Vol. 9, No. 3, pp. 295-323. https://doi.org/10.1016/0167-6105(82)90021-6
  5. Gelman, A., Carlin, J. B., Stern, H. S. and Rubin, D. B. (2003). Bayesian data analysis, Chapman & Hall/CRC, New York.
  6. George, E. I. and McCulloch, R. E. (1993). "Variable selection via Gibbs sampling." Journal of the American Statistical Association, Vol. 88, No. 423, pp. 881-889. https://doi.org/10.1080/01621459.1993.10476353
  7. Hundecha, Y., St-Hilaire, A., Ouarda, T. B. M. J. and El Adlouni, S. (2008). "A nonstationary extreme value analysis for the assessment of changes in extreme annual wind speed over the gulf of St. Lawrence, Canada." Journal of Appled Meteorology and Climatology, Vol. 47, pp. 2745-2759. https://doi.org/10.1175/2008JAMC1665.1
  8. Jenkinson, A. F. (1955). "The frequency distribution of the annual maximum (or minimum) values of meteorological elements." Journal of the Royal Meteorological Society, Vol. 81, No. 348, pp. 158-171. https://doi.org/10.1002/qj.49708134804
  9. Korea Road & Transportation (2010). Korea highway bridge design code (in Korean).
  10. Kwon, H. H., Brown, C. and Lall, U. (2008). "Climate informed flood frequency analysis and prediction in Montana using hierarchical Bayesian modeling." Geophysical Research Letters, Vol. 35, No. 5.
  11. Kwon, H. H., Kim, J. G., Lee, J. S. and Na, B. K. (2012). "Uncertainty assessment of single event rainfall-runoff model using bayesian model." J. Korea Water Resour. Assoc., KWRA, Vol. 45, No. 5, pp. 505-516 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.5.505
  12. Lee, J. J. (2010). Assessment of nonstationarity in precipitation and development of nonstationary frequency analysis, Ph.D. Dissertation, National University of Chonbuk, Chonju, Chonbuk, Korea.
  13. Lee, J. J., Kwon, H. H. and Kim, T. W. (2010). "Concept of trend analysis of hydrologic extreme variables and nonstationary frequency analysis." J. Korean Soc. Civ. Eng., KSCE, Vol. 30, No. 4B, pp. 389-397 (in Korean).
  14. Palutikof, J. P., Brabson, B. B., Lister, D. H. and Adcock, S. T. (1999). "A review of methods to calculater extreme wind speeds." Meteorological Applications, Vol. 6, No. 2, pp. 119-132. https://doi.org/10.1017/S1350482799001103
  15. Simiu, E. and Scanlan, R. H. (1996). Wind effects on structures, John Wiley & Sons, New York.
  16. Wang, L. and Li, J. (2016). "Estimation of extreme wind speed in SCS and NWP by a non-stationary model." Theoretical and Applied Mechanics Letters, Vol. 6, No. 3, pp. 131-138. https://doi.org/10.1016/j.taml.2016.04.001
  17. Yan, Z., Bate, S., Chandler, R. E., Isham, V. and Wheater, H. (2006). "Changes in extreme wind speeds in NW Europe simulated by generalized linear models." Theoretical and Applied Climatology, Vol. 83, No. 1-4, pp. 121-137. https://doi.org/10.1007/s00704-005-0156-x
  18. Zwiers, F. W. and Kharin, V. V. (1998). "Changes in the extremes of the climate simulated by CCC GCM2 under CO2 doubling." Journal of Climate, Vol. 11, No. 9, pp. 2200-2222. https://doi.org/10.1175/1520-0442(1998)011<2200:CITEOT>2.0.CO;2