References
- T. Kusunose and T. Sekino, "Improvement in Fracture Strength in Electrically Conductive AlN Ceramics with High Thermal Conductivity," Ceram. Int., 42 [11] 13183-89 (2016). https://doi.org/10.1016/j.ceramint.2016.05.110
- J.-W. Lee, W.-J. Lee, and S.-M. Lee, "Electrical Behavior of Aluminum Nitride Ceramics Sintered with Yttrium Oxide and Titanium Oxide," J. Korean Ceram. Soc., 53 [6] 635-40 (2016). https://doi.org/10.4191/kcers.2016.53.6.635
- H. M. Lee, K. Bharathi, and D. K. Kim, "Processing and Characterization of Aluminum Nitride Ceramics for High Thermal Conductivity," Adv. Eng. Mater., 16 [6] 655-69 (2014). https://doi.org/10.1002/adem.201400078
-
R. Kobayashi, Y. Nakajima, K. Mochizuki, K. Harata, T. Koto, K. Iwai, and J. Tatami, "Densification of AlN Ceramics by Spark plasma Sintering under
$1550^{\circ}C$ ," Adv. Powder Technol., 27 [3] 860-63 (2016). https://doi.org/10.1016/j.apt.2015.12.014 -
H.-J. Lee, S.-W. Kim, and S.-S. Ryu, "Sintering Behavior of Aluminum Nitride Ceramics with
$MgO-CaO-Al_2O_3-SiO_2$ Glass Additive," Int. J. Refract. Met. Hard Mater., 53 46-50 (2015). https://doi.org/10.1016/j.ijrmhm.2015.04.013 -
Y. Xiong, H. Wang, and Z. Fu, "Transient Liquid-Phase Sintering of AlN with
$CaF_2$ Additive," J. Eur. Ceram. Soc., 33 [11] 2199-205 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.03.024 - A. L. Molisani, H. N. Yoshimura, and H. Goldenstein, "Sintering Mechanisms in Aluminum Nitride with Y or Ca-Containing Additive," J. Mater. Sci.: Mater. Electron., 20 [1] 1-8 (2009).
- J. P. Holman, Heat Transfer; p. 9, McGraw-Hill, Inc., 1981.
- M. Medraj, Y. Baik, W. T. Thomson, and R. A. L. Drew, "Understanding AlN Sintering through Computational Thermodynamics Combined with Experimental Investigation," J. Mater. Process. Technol., 161 [3] 415-22 (2005). https://doi.org/10.1016/j.jmatprotec.2004.05.031
- K. F. Cai, D. S. McLachian, G. Sauti, and E. Mueller, "The Effects of Annealing on Thermal and Electrical Properties of Reaction-Bonded AlN Ceramic," Solid State Sci., 7 [8] 945-49 (2005). https://doi.org/10.1016/j.solidstatesciences.2004.12.001
- T. B. Jackson, A. V. Virkar, K. I. More, R. B. Dinwiddie Jr., and R. A. Cutler, "High-Thermal-Conductivity Aluminum Nitride Ceramic: The Effect of Thermodynamics, Kinetic, and Microstructural Factors," J. Am. Ceram. Soc., 80 [6] 1421-35 (1997). https://doi.org/10.1111/j.1151-2916.1997.tb03000.x
-
J. Hong, J.-H. Lee, Y.-N. Oh, K.-J. Cho, D.-H. Riu, S.-T. Oh, and C.-Y. Hyun, "Direct Bonding of Cu/AlN Using Cu-
$Cu_2O$ Eutectic Liquid," J. Korean Powder Metall. Inst., 20 [2] 114-19 (2013). https://doi.org/10.4150/KPMI.2013.20.2.114 - P. Zhang, R. Fu, Y. Tang, B. Cao, M. Fei, and Y. Yang, "Morphology of Thick Film Metallization on Aluminum Nitride Ceramics and Composition of Interface Layer," Ceram. Int., 41 [10] 13381-88 (2015). https://doi.org/10.1016/j.ceramint.2015.07.125
-
L. Qiao, H. Zhou, H. Xue, and S. Wang, "Effect of
$Y_2O_3$ on Low Temperature Sintering and Thermal Conductivity of AlN Ceramics," J. Eur. Ceram. Soc., 23 [1] 61-7 (2003). https://doi.org/10.1016/S0955-2219(02)00079-1 -
Y. Liu, H. Zhou, L. Qiao, and Y. Wu, "Low-Temperature Sintering of Aluminum Nitride with
$YF_3-CaF_2$ Binary Additive," J. Mater. Sci. Lett., 18 [9] 703-4 (1999). https://doi.org/10.1023/A:1006692111736 -
H. Nakano, K. Watari, and K. Urabe, "Grain Boundary Phase in AlN Ceramics Fired under Reducing
$N_2$ Atmosphere with Carbon," J. Eur. Ceram. Soc., 23 [10] 1761-68 (2003). https://doi.org/10.1016/S0955-2219(02)00408-9 - R. M. German, Sintering Theory and Practice; pp. 293-98, John Wiley & Sons, Inc., 1996.