참고문헌
- D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geometry 1 (1967), 331-345. https://doi.org/10.4310/jdg/1214428097
- D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, second edition, Progress in Mathematics, 203, Birkhauser Boston, Inc., Boston, MA, 2010.
- W. M. Boothby and H. C. Wang, On contact manifolds, Ann. of Math. (2) 68 (1958), 721-734. https://doi.org/10.2307/1970165
- G. Calvaruso and D. Perrone, Torsion and homogeneity on contact metric threemanifolds, Ann. Mat. Pura Appl. (4) 178 (2000), 271-285. https://doi.org/10.1007/BF02505899
- G. Calvaruso and D. Perrone, Natural almost contact structures and their 3D homogeneous models, Math. Nachr. 289 (2016), no. 11-12, 1370-1385. https://doi.org/10.1002/mana.201400315
- G. Calvaruso, D. Perrone, and L. Vanhecke, Homogeneity on three-dimensional contact metric manifolds, Israel J. Math. 114 (1999), 301-321. https://doi.org/10.1007/BF02785585
- G. Calvaruso and L. Vanhecke, Special ball-homogeneous spaces, Z. Anal. Anwendungen 16 (1997), no. 4, 789-800. https://doi.org/10.4171/ZAA/792
- B. Cappelletti-Montano, A. De Nicola, and I. Yudin, A survey on cosymplectic geometry, Rev. Math. Phys. 25 (2013), no. 10, 1343002, 55 pp. https://doi.org/10.1142/S0129055X13430022
-
E. Garcia-Rio and L. Vanhecke, Five-dimensional
$\phi$ -symmetric spaces, Balkan J. Geom. Appl. 1 (1996), no. 2, 31-44. - O. Kowalski and L. Vanhecke, Ball-homogeneous and disk-homogeneous Riemannian manifolds, Math. Z. 180 (1982), no. 4, 429-444. https://doi.org/10.1007/BF01214716
- H. Li, Topology of co-symplectic/co-Kahler manifolds, Asian J. Math. 12 (2008), no. 4, 527-543. https://doi.org/10.4310/AJM.2008.v12.n4.a7
- J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293-329. https://doi.org/10.1016/S0001-8708(76)80002-3
- Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239-250. https://doi.org/10.2996/kmj/1138036371
- Z. Olszak, Locally conformal almost cosymplectic manifolds, Colloq. Math. 57 (1989), no. 1, 73-87. https://doi.org/10.4064/cm-57-1-73-87
- D. Perrone, Classification of homogeneous almost cosymplectic three-manifolds, Differential Geom. Appl. 30 (2012), no. 1, 49-58. https://doi.org/10.1016/j.difgeo.2011.10.003
- D. Perrone, Minimal Reeb vector fields on almost cosymplectic manifolds, Kodai Math. J. 36 (2013), no. 2, 258-274. https://doi.org/10.2996/kmj/1372337517
- I. M. Singer, Infinitesimally homogeneous spaces, Comm. Pure Appl. Math. 13 (1960), 685-697. https://doi.org/10.1002/cpa.3160130408
- W. Wang, A class of three dimensional almost coKahler manifolds, Palest. J. Math. 6 (2017), no. 1, 111-118.
- Y. Wang, Ricci tensors on three-dimensional almost coKahler manifolds, Kodai Math. J. 39 (2016), no. 3, 469-483. https://doi.org/10.2996/kmj/1478073764
- Y. Wang, Almost co-Kahler manifolds satisfying some symmetry conditions, Turkish J. Math. 40 (2016), no. 4, 740-752. https://doi.org/10.3906/mat-1504-73
- K. Yamato, A characterization of locally homogeneous Riemann manifolds of dimension 3, Nagoya Math. J. 123 (1991), 77-90. https://doi.org/10.1017/S0027763000003652