DOI QR코드

DOI QR Code

A REMARK ON QF RINGS

  • Feng, Feng (School of Mathematics Southeast University) ;
  • Shen, Liang (School of Mathematics Southeast University)
  • 투고 : 2018.02.24
  • 심사 : 2018.10.29
  • 발행 : 2019.01.31

초록

This article mainly concentrates on the open question whether a right self-injective ring R is necessary QF if $R/S_l$ is left Goldie. It is answered affirmatively under the condition $S_l{\subseteq}S_r$, where $S_l$ and $S_r$ denote the left socle and right socle of R respectively. And the original condition "right self-injective" can be weakened to "right CS and right P-injective". It is also proved that a semiperfect, left and right mininjective ring R is QF if $S_r{\subseteq}^{ess}$ $R_R$ and $R/S_l$ is left Goldie.

키워드

참고문헌

  1. P. Ara and J. K. Park, On continuous semiprimary rings, Comm. Algebra 19 (1991), no. 7, 1945-1957. https://doi.org/10.1080/00927879108824239
  2. E. P. Armendariz, Rings with DCC on essential left ideals, Comm. Algebra 8 (1980), no. 3, 299-308. https://doi.org/10.1080/00927878008822460
  3. E. P. Armendariz and J. K. Park, Self-injective rings with restricted chain conditions, Arch. Math. (Basel) 58 (1992), no. 1, 24-33. https://doi.org/10.1007/BF01198638
  4. J. Chen, W. Li, and L. Shen, QF rings characterized by injectivities: a survey, in Ring theory and its applications, 45-68, Contemp. Math., 609, Amer. Math. Soc., Providence, RI, 2014.
  5. J. Chen, L. Shen, and Y. Zhou, Characterizations of QF rings, Comm. Algebra 35 (2007), no. 1, 281-288. https://doi.org/10.1080/00927870601042134
  6. N. V. Dung, D. V. Huynh, and R. Wisbauer, Quasi-injective modules with acc or dcc on essential submodules, Arch. Math. (Basel) 53 (1989), no. 3, 252-255. https://doi.org/10.1007/BF01277059
  7. S. Eilenberg and T. Nakayama, On the dimension of modules and algebras. V. Dimension of residue rings, Nagoya Math. J. 11 (1957), 9-12. https://doi.org/10.1017/S0027763000001902
  8. C. Faith, Rings with ascending condition on annihilators, Nagoya Math. J. 27 (1966), 179-191. https://doi.org/10.1017/S0027763000011983
  9. I. N. Herstein and L. Small, Nil rings satisfying certain chain conditions, Canad. J. Math. 16 (1964), 771-776. https://doi.org/10.4153/CJM-1964-074-0
  10. C. Lanski, Nil subrings of Goldie rings are nilpotent, Canad. J. Math. 21 (1969), 904-907. https://doi.org/10.4153/CJM-1969-098-x
  11. Y. Lee and N. S. Tung, A note on continuous rings, Arch. Math. (Basel) 63 (1994), no. 1, 30-32. https://doi.org/10.1007/BF01196295
  12. T. Nakayama, On Frobeniusean algebras. II, Ann. of Math. (2) 42 (1941), 1-21. https://doi.org/10.2307/1968984
  13. W. K. Nicholson and M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics, 158, Cambridge University Press, Cambridge, 2003.
  14. L. Shen and J. Chen, New characterizations of quasi-Frobenius rings, Comm. Algebra 34 (2006), no. 6, 2157-2165. https://doi.org/10.1080/00927870600549667