DOI QR코드

DOI QR Code

A GENERALIZATION OF MULTIPLICATION MODULES

  • Perez, Jaime Castro (Escuela de Ingenieria y Ciencias Instituto Tecnologico y de Estudios Superiores de Monterrey) ;
  • Montes, Jose Rios (Instituto de Matematicas Universidad Nacional Autonoma de Mexico) ;
  • Sanchez, Gustavo Tapia (Instituto de Ingenieria y Tecnologia Universidad Autonoma de Ciudad Juarez)
  • Received : 2018.02.08
  • Accepted : 2018.09.07
  • Published : 2019.01.31

Abstract

For $M{\in}R-Mod$, $N{\subseteq}M$ and $L{\in}{\sigma}[M]$ we consider the product $N_ML={\sum}_{f{\in}Hom_R(M,L)}\;f(N)$. A module $N{\in}{\sigma}[M]$ is called an M-multiplication module if for every submodule L of N, there exists a submodule I of M such that $L=I_MN$. We extend some important results given for multiplication modules to M-multiplication modules. As applications we obtain some new results when M is a semiprime Goldie module. In particular we prove that M is a semiprime Goldie module with an essential socle and $N{\in}{\sigma}[M]$ is an M-multiplication module, then N is cyclic, distributive and semisimple module. To prove these results we have had to develop new methods.

Keywords

References

  1. D. D. Anderson, Some remarks on multiplication ideals, Math. Japon. 25 (1980), no. 4, 463-469.
  2. D. D. Anderson, Some remarks on multiplication ideals. II, Comm. Algebra 28 (2000), no. 5, 2577-2583. https://doi.org/10.1080/00927870008826980
  3. A. Barnard, Multiplication modules, J. Algebra 71 (1981), no. 1, 174-178. https://doi.org/10.1016/0021-8693(81)90112-5
  4. J. A. Beachy, M-injective modules and prime M-ideals, Comm. Algebra 30 (2002), no. 10, 4649-4676. https://doi.org/10.1081/AGB-120014660
  5. L. Bican, P. Jambor, T. Kepka, and P. Nemec, Prime and coprime modules, Fund. Math. 107 (1980), no. 1, 33-45. https://doi.org/10.4064/fm-107-1-33-45
  6. J. Castro, M. Medina, and J. Rios, Modules with ascending chain condition on annihilators and Goldie modules, Comm. Algebra 45 (2017), no. 6, 2334-2349. https://doi.org/10.1080/00927872.2016.1233200
  7. J. Castro, M. Medina, J. Rios, and A. Zaldivar, On semiprime Goldie modules, Comm. Algebra 44 (2016), no. 11, 4749-4768. https://doi.org/10.1080/00927872.2015.1113290
  8. J. Castro, M. Medina, J. Rios, and A. Zaldivar, On the structure of Goldie modules, Comm. Algebra 46 (2018), no. 7, 3112-3126. https://doi.org/10.1080/00927872.2017.1404078
  9. J. Castro and J. Rios, Prime submodules and local Gabriel correspondence in ${\sigma}$], Comm. Algebra 40 (2012), no. 1, 213-232. https://doi.org/10.1080/00927872.2010.529095
  10. J. Castro and J. Rios, FBN modules, Comm. Algebra 40 (2012), no. 12, 4604-4616. https://doi.org/10.1080/00927872.2011.613879
  11. J. Castro and J. Rios, Krull dimension and classical Krull dimension of modules, Comm. Algebra 42 (2014), no. 7, 3183-3204. https://doi.org/10.1080/00927872.2013.781611
  12. Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra 16 (1988), no. 4, 755-779. https://doi.org/10.1080/00927878808823601
  13. A. G. Naoum, On the ring of endomorphisms of a finitely generated multiplication module, Period. Math. Hungar. 21 (1990), no. 3, 249-255. https://doi.org/10.1007/BF02651092
  14. F. Raggi, J. Rios, H. Rincon, R. Fernandez-Alonso, and C. Signoret, The lattice structure of preradicals, Comm. Algebra 30 (2002), no. 3, 1533-1544. https://doi.org/10.1080/00927870209342395
  15. P. F. Smith, Some remarks on multiplication modules, Arch. Math. (Basel) 50 (1988), no. 3, 223-235. https://doi.org/10.1007/BF01187738
  16. B. Stenstrom, Rings of Quotients, Graduate Texts in Mathematics, New York, Springer-Verlag, 1975.
  17. A. A. Tuganbaev, Multiplication modules, J. Math. Sci. (N. Y.) 123 (2004), no. 2, 3839-3905. https://doi.org/10.1023/B:JOTH.0000036653.76231.05
  18. N. Vanaja, All finitely generated M-subgenerated modules are extending, Comm. Algebra 24 (1996), no. 2, 543-572. https://doi.org/10.1080/00927879608825585
  19. R. Wisbauer, Foundations of Module and Ring Theory, revised and translated from the 1988 German edition, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.