References
- Anderson, W.K., Newman, J.C., Whitfield, D.L. and Nielsen, E.J. (2001), "Sensitivity analysis for Navier-stokes equations on unstructured meshes using complex variables", AIAA J., 39(1), 56-63. https://doi.org/10.2514/2.1270
- Bakshi, P. and Pandey, P., (2000), "Semi-analytical sensitivity using hybrid finite elements", Comput. Struct., 77(2), 201-213. https://doi.org/10.1016/S0045-7949(99)00206-0
- Beer, Johnston and DeWolf, J. (2002), Mechanics of Materials, 3rd, McGraw-Hill, New York, U.S.A.
- Cheng, G. and Olhoff, N. (1993), "New method of error analysis and detection in semi-analytical sensitivity analysis", Optimization of Large Structural Systems, 361-383.
- Cho, M. and Kim, H. (2005), "A refined semi-analytic design sensitivity based on mode decomposition and Neumann series", J. Numer. Methods Eng., 62(1), 19-49. https://doi.org/10.1002/nme.1163
- Cho, S. and Jung, H.S. (2003), "Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures", Comput. Methods Appl. Mech. Eng., 192(22-24), 2539-2553. https://doi.org/10.1016/S0045-7825(03)00274-3
- Choi, K.K. (2005), Structural Sensitivity Analysis and Optimization 1: Linear Systems, Springer, New York, U.S.A.
- Chung, S.H., Kwon, Y.S., Park, S.J. and German, R.M. (2009), "Sensitivity analysis by the adjoint variable method for optimization of the die compaction process in particulate materials processing", Finite Elem. Anal. Des., 45(11), 836-844. https://doi.org/10.1016/j.finel.2009.06.020
- De Boer, H. and van Keulen, F. (2000), "Refined semi-analytical design sensitivities", Int. J. Solids Struct., 37(46), 6961-6980. https://doi.org/10.1016/S0020-7683(99)00322-4
- Deng, S. and Suresh, K. (2016), "Topology optimization under linear thermo-elastic buckling", International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, North Carolina, August.
- Deng, S. and Suresh, K. (2017a), "Stress constrained thermo-elastic topology optimization with varying temperature fields via augmented topological sensitivity based level set", Struct. Multidiscip. O., 56(6), 1413-1427. https://doi.org/10.1007/s00158-017-1732-2
- Deng, S. and Suresh, K. (2017b), "Topology optimization under thermo-elastic buckling", Struct. Multidiscip. O, 55(5), 1759-1772. https://doi.org/10.1007/s00158-016-1611-2
- Deng, S., Suresh, K. and Joo, J. (2014), "Stress-constrained thermo-elastic topology optimization: A topological sensitivity approach", International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Buffalo, New York, August.
- Ghoddosian, A. and Sheikhi, M. (2010), "Optimal design of structural support position for minimizing maximal bending moment by PSO with multi loads", J. Modeling Eng., 8(22), 59-68.
- Ghoddosian, A. and Sheikhi, M. (2013), Meta-heuristic Optimization Methods in Engineering, Semnan University Press, Iran.
- Gomez-Farias, A., Montoya, A. and Millwater, H. (2015), "Complex finite element sensitivity method for creep analysis", J. Pressure Vessels Piping, 132-133, 27-42. https://doi.org/10.1016/j.ijpvp.2015.05.006
- Hassanzadeh, M. (2016), "Computation of shape design sensitivities for linear FEM using modified semi-analytical method", Modares Mech. Eng., 15(11), 73-80.
- Lai, K.L. and Crassidis, J.L. (2008), "Extension of the first and second complex-step derivative approximations", J. Comput. Appl. Math., 219(1), 276-293. https://doi.org/10.1016/j.cam.2007.07.026
- Lund, E. and Olhoff, N. (1994), "Shape design sensitivity analysis of eigenvalues using "exact" numerical differentiation of finite element matrices", Struct. Optimization, 8(1), 52-59. https://doi.org/10.1007/BF01742934
- Lyness, J. (1967), "Numerical algorithms based on the theory of complex variable", ACM '67 Proceeding of the 22nd National Conference, Washington, DC, U.S.A., January.
- Lyness, J.N. and Moler, C.B. (1967), "Numerical differentiation of analytic functions", SIAM Journal on Numerical Analysis, 4(2), 202-210. https://doi.org/10.1137/0704019
- Olhoff, N., Rasmussen, J. and Lund, E. (1993), "A Method of "Exact" Numerical Differentiation for Error Elimination in Finite-Element-Based Semi-Analytical Shape Sensitivity Analyses", J. Struc. Mech., 21(1), 1-66. https://doi.org/10.1080/08905459308905180
- Oral, S. (1996), "An improved semi-analytical method for sensitivity analysis", Struct. Optimization, 11(1-2), 67-69. https://doi.org/10.1007/BF01279659
- Rodriguez, D. (2000), "A multidisciplinary optimization method for designing inlets using complex variables", 8th Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, September.
- Squire, W. and Trapp, G. (1998), "Using complex variables to estimate derivatives of real functions", Siam Review, 40(1), 110-112. https://doi.org/10.1137/S003614459631241X
- van Keulen, F. and De Boer, H. (1998), "Refined semi-analytical design sensitivities for buckling", the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, St. Louis, U.S.A., September.
- van Keulen, F. and De Boer, H. (1998), "Rigorous improvement of semi-analytical design sensitivities by exact differentiation of rigid body motions", Int. J. Numer. Methods Eng., 42(1), 71-91. https://doi.org/10.1002/(SICI)1097-0207(19980515)42:1<71::AID-NME350>3.0.CO;2-C
- van Keulen, F., Haftka, H.M. and Kim, N.H. (2005), "Review of options for structural design sensitivity analysis, part 1: Linear systems", Comput. Method Appl. Mech. Eng., 194(30-33), 3213-3234. https://doi.org/10.1016/j.cma.2005.02.002
- Vatsa, V.N. (2000), "Computation of sensitivity derivatives of Navier-Stokes equations using complex variables", Adv. Eng. Software, 31(8), 655-659. https://doi.org/10.1016/S0965-9978(00)00025-9
- Voorhees, A., Millwater, H. and Bagley, R. (2011), "Complex variable methods for shape sensitivity of finite element models", Finite Elem. Anal. Des., 47(10), 1146-1156. https://doi.org/10.1016/j.finel.2011.05.003
- Voorhees, A., Millwater, H., Bagley, R. and Golden, P. (2012), "Fatigue sensitivity analysis using complex variable methods", J. Fatigue, 40, 61-73. https://doi.org/10.1016/j.ijfatigue.2012.01.016