DOI QR코드

DOI QR Code

수문기상가뭄지수 (HCDI) 개발 및 가뭄 예측 효율성 평가

Development of Hydroclimate Drought Index (HCDI) and Evaluation of Drought Prediction in South Korea

  • Ryu, JaeHyun (Department of Soil and Water Systems, College of Agricultural and Life Sciences, University of Idaho) ;
  • Kim, JungJin (Texas A&M AgriLife Research, Texas A&M University) ;
  • Lee, KyungDo (National Institute of Agricultural Science, Rural Development Administration)
  • 투고 : 2017.12.26
  • 심사 : 2018.10.05
  • 발행 : 2019.01.31

초록

The main objective of this research is to develop a hydroclimate drought index (HCDI) using the gridded climate data inputs in a Variable Infiltration Capacity (VIC) modeling platform. Typical drought indices, including, Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and Self-calibrated Palmer Drought Severity Index (SC-PDSI) in South Korea are also used and compared. Inverse Distance Weighting (IDW) method is applied to create the gridded climate data from 56 ground weather stations using topographic information between weather stations and the respective grid cell ($12km{\times}12km$). R statistical software packages are used to visualize HCDI in Google Earth. Skill score (SS) are computed to evaluate the drought predictability based on water information derived from the observed reservoir storage and the ground weather stations. The study indicates that the proposed HCDI with the gridded climate data input is promising in the sense that it can help us to predict potential drought extents and to mitigate its impacts in a changing climate. The longer term drought prediction (e.g., 9 and 12 month) capability, in particular, shows higher SS so that it can be used for climate-driven future droughts.

키워드

NGHHCI_2019_v61n1_31_f0001.png 이미지

Fig. 1 Study area

NGHHCI_2019_v61n1_31_f0002.png 이미지

Fig. 2 Spatial interpolation method to create the gridded meterological dataset from the selected weather stations

NGHHCI_2019_v61n1_31_f0003.png 이미지

Fig. 3 Box plot comparisons of total skill scores computed by drought indices (SPI, SEPI, and SC-PDSI) between the gridded dataset (GS) and the observed weather dataset (WS)

NGHHCI_2019_v61n1_31_f0004.png 이미지

Fig. 4 Skill score comparison between SPI, SPEI, sc-PDSI and HCDI

NGHHCI_2019_v61n1_31_f0005.png 이미지

Fig. 5 SPI (a), SPEI (b), (c) SC-PDSI, and (d) HCDI drought maps for 1, 3, and 12 month time window in Google Earth

Table 1 The selected multipurpose dam watersheds from the major four river watersheds in Korea

NGHHCI_2019_v61n1_31_t0001.png 이미지

Table 2 Drought response phase based on the storage rates in the selected multipurpose dams

NGHHCI_2019_v61n1_31_t0002.png 이미지

Table 3 The classified drought condition of SPI, SPEI, HCDI, and SC-PDSI

NGHHCI_2019_v61n1_31_t0003.png 이미지

Table 4 The Reclassified drought indices

NGHHCI_2019_v61n1_31_t0004.png 이미지

Table 5 The matrix table to apply skill scores methods

NGHHCI_2019_v61n1_31_t0005.png 이미지

Table 6 Average skill score (SS) for each drought index for the observed weather station and the gridded climate data in the selected basins

NGHHCI_2019_v61n1_31_t0006.png 이미지

Table 7 Average skill score of SPI, SPEI, SC-PDSI, and HCDI (1, 3, 6, 9, 12 month time windows) for KSS and HSS in the selected multipurpose dam watersheds

NGHHCI_2019_v61n1_31_t0007.png 이미지

참고문헌

  1. Kang, S. U. and J. W. Moon, 2014. Drought analysis using SC-PDSI and derivation of drought severity-durationfrequenccy curves in Korea. Journal of Korea Water Resources Association 47(9): 813-824 (in Korean). doi:10.3471/JKWRA.2014.47.9.813.
  2. Kim, B. S., J. H. Sung, H. S. Kang, and C. H. Cho, 2012. Assessment of drought severity over South Korea using standardized precipitation evapo-transpiration index. Journal of Korea Water Resources Association 45(9): 887-900 (in Korean). doi:10.3471/JKWRA.2012.45.9.887.
  3. Kim, G. S. and J. W. Lee, 2011. Evaluation of drought indices using the drought records. Journal of Korea Water Resources Association 44(9): 639-652 (in Korean). doi:10.3741/jkwra.2011.44.8.639.
  4. Kim, O.K., J.Y. Choi, M.W. Jang, S.H. Yoon, W.H. Nam, J.H. Lee, and J.K. Noh, 2006. Watershed scale drought assessment using soil moisture index. Journal of the Korean Society of Agricultural Engineers 48(6): 3-13. doi:10.5389/ksae.2006.48.6.003.
  5. Yoo. J. Y., H. Y. Song, T. W. Kim, and J. H. Ah, 2013. Evaluation of short-term drought using daily standardized precipitation index and ROC analysis. Journal of the Korean Society of Civil Engineers 33(5): 1851-1860 (in Korean). doi:10.12652/ksce.2013.33.5.1851.
  6. KRCC (Korea Rural Community Corporation), 2012. White paper of drought in 2012 (in Korean).
  7. K-Water, 2001. Report of drought survey in 2001 (in Korean).
  8. Park, M.W., S.J. Kim, H.J. Kwon, P.S. Kim, S.M. Kang, and J.H. Lee, 2017. Availability assessment of meteorological drought Index for agricultural drought estimation in ungauged area of agricultural drought parameter. Journal of the Korean Society of Agricultural Engineers 59(5): 127-136 (in Korean). doi:10.5389/KSAE.2017.59.5.127.
  9. Burton, I., R.W. Kates, and G. G. White, 1978. The Environment as Hazard. Oxford University Press. pp 240. doi:10.4324/9780203989869.
  10. Belayneh, A., J. Adamowski, B. Khalil, and J. Quilty, 2017. Coupling machine learning methods with wavelet transforms and the bootstrap and boosting ensemble approaches for dorught predictin. Atmospheric Research 172-173: 37-47. doi:10.1016/j.atmosres.2015.12.017.
  11. Chen, F. W., and C. W. Liu, 2012. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment 10: 209-222. doi:10.1007/s10333-012-0319-1.
  12. Cherkauer, K. A., and D. P. Lettenmaier, 2007. Simulation of spatial variability in snow and frozen soil. Journal of Geophys Research. doi:10.1029/2003JD003575.
  13. Dirksa, K. N., J. E. Hayb, C. D. Stowa, and D. Harrisa, 1998. High-resolution studies of rainfall on Norfolk Island: Park II: Interpolation of rainfall data. Journal of Hydrology 208: 187-193. doi:10.1016/s0022-1694(98)00155-3.
  14. Degaetano, A.T., B.N. Belcher, and W. Noon, 2015. Temporal and spatial interpolation of the standardized precipitation index for computational efficiency in the dynamic drought Index Tool. American Meteorological Society. doi:10.1175/JAMC-D-14-0088.1.
  15. Google Inc, 2015. Google Earth. (http://www.google.com/earth/.)
  16. Goswami. B., V. Venugopal, D. Sengupta, M. Madhusoodanan, and P. Xavier, 2005. Increasing trend of extreme rain events over India in a warming environment, Science 314(5804): 1442-1445. doi:10.1126/science.1132027.
  17. Gocic, M., and S. Trajkovic, 2013. Analysis of precipitation and drought data in Serbia over the period 1980-2010. Journal of Hydrology 494: 32-42. doi:10.1016/j.jhydrol.2013.04.044.
  18. Heidke, P., 1996. Measures of success and goodness of wind force forecasts by the gale-warning service. Geogr. Ann. 8: 301-349. https://doi.org/10.2307/519729
  19. Lal, R., J. A. Delgado, J. S. Gulliver, D. Nielsen, C. W. Rice, and R. S. Van Pelt, 2012. Adapting agricultural to drought and extreme events. Journal of Soil and Water Conservation 68(6): 162-166. doi:10.2489/jswc.67.6.162a.
  20. Liang, X., D. P. Letternmaier, E. F. Wood and S. J. Burges, 1994. A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research 99: 14415-14428. doi:10.1029/94jd00483.
  21. Lu, G. Y., and D. W. Wong, 2008. An adpative inverse-distance weighting spatial interpolation technique. Computer & Geoscience 34: 1044-1055. https://doi.org/10.1016/j.cageo.2007.07.010
  22. McKee, T. B. and N. J. Doesken, 1993. The relationship of drought frequency and duration to time scales. In: 8th Conference on Applied Climatology, 17-22 January, Anaheim, California. 179-184.
  23. McKee, T. B., and N. J. Doesken, 1995. Drought monitoring with multiple time scales. In 9th Conference on Applied Climatology, American Meteorological Society, Boston. 233-236.
  24. Moreira, E. E., A. A. Paulo, L. S. Pereira and J. T. Mexia, 2006. Analysis of SPI drought class transitions using nonlinear models. Jounral of Hydrology 331: 349-359. doi:10.1016/j.jhydrol.2006.05.022.
  25. Murphy, A. H., and H. Daan. 1985. Forecast evaluation. Probability, Statistics, and Decision Marking in the Atmospheric Sciences. Boulder, Co, Westview Press, pp. 379-437. doi:10.1007/springerreference_6698.
  26. Mu, Q., M. Zhao, J. S. Kimball, N. G, McDowell, and S. W. Running, 2013. A remotrely sensed global terrestrial drought severity index. Bull. Amer. Meteor. Soc. 94: 83-98. doi:10.1175-BAMS-D-11-00213.1. https://doi.org/10.1175/BAMS-D-11-00213.1
  27. Nalbantis, I., 2008. Evaluation of a Hydrologicl Drought Index. Europen Water 23/24: 66-67.
  28. Nalbantis, I., and G. Taskiris, 2009. Assessment of hydrological drought revisited. Water Resource Management 23: 881-897. https://doi.org/10.1007/s11269-008-9305-1
  29. Palmer, W. C, 1965. Meteorological drought. Research Paper No. 45, Weather Bureau, U.S. Dept. of Commerce, Washington, DC.
  30. R Statistical software, 2017. R foundation. Link: www.r-project.org accessed November 21, 2017.
  31. Rhee, J.Y., J.H. Im, and G.J. Carbone, 2010. Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sensing of Environment 114(12): 2875-2887. doi:10.1016/j.rse.2010.07.005.
  32. Rhee, J., and G. J. Carbone, 2007. A comparision of weekly monitoring methods of the Palmer drought index. J. Climate 20: 6033-6044. doi:10.1175/2007JCLI1693.1.
  33. Ryu, J. H., M. Sohrabi and A. Acharya, 2014. Toward mapping gridded drought indices to evaluate local drought in a rapidly changing global environment. Water Resources Management 28(11): 3859-3869. doi:10.1007/s11269-014-0714-z.
  34. Ryu, J. H., M. D. Svoboda, J. D. Lenters, T. Tadesse, and C. Knutson, 2010. Finding potential extents for ENSO-driven hydrologic drought forecasts in the United States. Climatic Change 101(3): 575-597. doi:10.1007/s10584-009-9705-0.
  35. Schooner, J. L., 2012. The U.S Drought of 2012. Environmental Science and Technology 46: 10480. doi:10.1021/issn.0013-936x.
  36. Shuttleworth, W. J., 1993. Evaporation. In Madiment Dr (ed) Handbook of hydrology, chap 4, McGraw Hill Inc, New York.
  37. Son, K.H., D.H. Bae, H.S. Cheong, 2015. Construction & evaluation of GloSea5-based hydrological drought outlook system. Atmosphere, Korean Meteorological Society 25(2): 271-281. doi:10.14191/atmos.2015.25.2.271.
  38. Thornton, P.E., and S.W. Running, 1999. An improved algorithm for estimating incident daily solar radiation from measurement of temperature, humidity, and precipitation. Agri For Meteorol 93(4): 211-228. doi:10.1016/s0168-1923(98)00126-9.
  39. Thormthwait, C. W., 1948. An approach toward a rational classification of climate. Geographical Review 38(1): 55-94. doi:10.2307/210739.
  40. Vicente-Serrano, S. M., S. Begueria, and J. I. Lopez-Moreno, 2010. A multiscalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index. Journal of Climate 23: 1696-1718. doi:10.1175/2009jcli2909.1.
  41. Wells, N., S. Goddard, and J. J. Hayes, 2004. A self-calibrating Palmer drought severity index. Journal of Climate 17(12): 2335-2351. doi:10.1175/1520-0442(2004)017<2335:aspdsi>2.0.co;2.
  42. Wilhite, D. A., 1993. Drought assessment, management, and planning: theory and case studies. Natural Resource Management and Policy Series 2: 293. doi:10.1007/978-1-4615-3224-8.